Search Results

Now showing 1 - 10 of 12
  • Item
    Magnetic properties of GaAs-Fe3Si core-shell nanowires — A comparison of ensemble and single nanowire investigation
    (New York : American Institute of Physics, 2017) Hilse, Maria; Jenichen, Bernd; Herfort, Jens
    On the basis of semiconductor-ferromagnet GaAs-Fe3Si core-shell nanowires (Nws) we compare the facilities of magnetic Nw ensemble measurements by superconducting quantum interference device magnetometry versus investigations on single Nws by magnetic force microscopy and computational micromagnetic modeling. Where a careful analysis of ensemble measurements backed up by transmission electron microscopy gave no insights on the properties of the Nw shells, single Nw investigation turned out to be absolutely essential.
  • Item
    Sub-15-fs X-ray pump and X-ray probe experiment for the study of ultrafast magnetization dynamics in ferromagnetic alloys
    (Washington, DC : Soc., 2021) Liu, Xuan; Merhe, Alaaeldine; Jal, Emmanuelle; Delaunay, Renaud; Jarrier, Romain; Chardonnet, Valentin; Hennes, Marcel; Chiuzbaian, Sorin G.; Légaré, Katherine; Hennecke, Martin; Radu, Ilie; Von Korff Schmising, Clemens; Grunewald, Særen; Kuhlmann, Marion; Lüning, Jan; Vodungbo, Boris
    In this paper, we present a new setup for the measurement of element-specific ultrafast magnetization dynamics in ferromagnetic thin films with a sub-15-fs time resolution. Our experiment relies on a split and delay approach which allows us to fully exploit the shortest X-rays pulses delivered by X-ray Free Electrons Lasers (close to the attosecond range), in an X-ray pump – X-ray probe geometry. The setup performance is demonstrated by measuring the ultrafast elemental response of Ni and Fe during demagnetization of ferromagnetic Ni and Ni80Fe20 (Permalloy) samples upon resonant excitation at the corresponding absorption edges. The transient demagnetization process is measured in both reflection and transmission geometry using, respectively, the transverse magneto-optical Kerr effect (T-MOKE) and the Faraday effect as probing mechanisms.
  • Item
    Strong effects of uniaxial pressure and short-range correlations in Cr2Ge2Te6
    (College Park, MD : APS, 2022) Spachmann, S.; Elghandour, A.; Selter, S.; Büchner, B.; Aswartham, S.; Klingeler, R.
    Cr2Ge2Te6 is a quasi-two-dimensional semiconducting van der Waals ferromagnet down to the bilayer with great potential for technological applications. Engineering the critical temperature to achieve room-temperature applications is one of the critical next steps on this path. Here, we report high-resolution capacitance dilatometry studies on Cr2Ge2Te6 single crystals which directly prove significant magnetoelastic coupling and provide quantitative values of the large uniaxial pressure effects on long-range magnetic order (∂TC/∂pc=24.7 K/GPa and ∂TC/∂pab=−15.6 K/GPa) derived from thermodynamic relations. Moderate in-plane strain is thus sufficient to strongly enhance ferromagnetism in Cr2Ge2Te6 up to room temperature. Moreover, unambiguous signs of short-range magnetic order up to 200 K are found.
  • Item
    Visualization of localized perturbations on a (001) surface of the ferromagnetic semimetal EuB6
    (College Park, MD : American Physical Society, 2020) Rößler, S.; Jiao, L.; Seiro, S.; Rosa, P.F.S.; Fisk, Z.; Rößler, U.K.; Wirth, S.
    We performed scanning tunneling microscopy (STM) and spectroscopy on a (001) surface of the ferromagnetic semimetal EuB6. Large-amplitude oscillations emanating from the elastic scattering of electrons by the surface impurities are observed in topography and in differential conductance maps. Fourier transform of the conductance maps embracing these regions indicate a holelike dispersion centered around the Γ point of the two-dimensional Brillouin zone. Using density functional theory slab calculations, we identify a spin-split surface state, which stems from the dangling pz orbitals of the apical boron atom. Hybridization with bulk electronic states leads to a resonance enhancement in certain regions around the Γ point, contributing to the remarkably strong real-space response around static point defects, which are observed in STM measurements.
  • Item
    Spin pumping at interfaces with ferro- and paramagnetic Fe60Al40films acting as spin source and spin sink
    (Melville, NY : American Inst. of Physics, 2022) Strusch, T.; Lenz, K.; Meckenstock, R.; Bali, R.; Ehrler, J.; Lindner, J.; Fassbender, J.; Farle, M.; Potzger, K.; Semisalova, A.
    We present a study of spin pumping efficiency and determine the spin mixing conductance and spin diffusion length in thin bilayer films based on 3d transition metal alloy Fe60Al40. Due to its magnetostructural phase transition, Fe60Al40 can be utilized as a ferromagnetic (FM) or paramagnetic (PM) material at the same temperature depending on its structural order; thus a thin Fe60Al40 film can act as a spin source or a spin sink when interfaced with a paramagnet or a ferromagnet, respectively. Ferromagnetic resonance measurements were performed in a frequency range of 5-35 GHz on bilayer films composed of FM-Fe60Al40/Pd and PM-Fe60Al40/Ni80Fe20 (permalloy). The increase in damping with the thickness of the paramagnetic layer was interpreted as a result of spin pumping into the paramagnet. We determine the spin mixing conductance g P d ↑↓ = (3.8 ± 0.5) × 10 18 m - 2 at the FM-Fe60Al40/Pd interface and the spin diffusion length λ P d = 9.1 ± 2.0 nm in Pd. For the PM-Fe60Al40/permalloy interface, we find a spin mixing conductance g F e A l ↑↓ = (2.1 ± 0.2) × 10 18 m - 2 and a spin diffusion length λ F e A l = 11.9 ± 0.2 nm for PM-Fe60Al40. The demonstrated bi-functionality of the Fe60Al40 alloy in spin pumping structures may be promising for spintronic applications.
  • Item
    Mechanical properties and twin boundary drag in Fe-Pd ferromagnetic shape memory foils-experiments and ab initio modeling
    (Bristol : IOP, 2011) Claussen, I.; Mayr, S.G.
    We report on vibrating reed measurements combined with density functional theory-based calculations to assess the elastic and damping properties of Fe-Pd ferromagnetic shape memory alloy splats. While the austenite-martensite phase transformation is generally accompanied by lattice softening, a severe modulus defect and elevated damping behavior are characteristic of the martensitic state. We interpret the latter in terms of twin boundary motion between pinning defects via partial 'twinning' dislocations. Energy dissipation is governed by twin boundary drag, primarily due to lattice imperfections, as concluded from the temperature dependence of damping and related activation enthalpies.
  • Item
    Increasing the performance of a superconducting spin valve using a Heusler alloy
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Kamashev, A.A.; Validov, A.A.; Schumann, J.; Kataev, V.; Büchner, B.; Fominov, Y.V.; Garifullin, I.A.
    We have studied superconducting properties of spin-valve thin-layer heterostructures CoOx/F1/Cu/F2/Cu/Pb in which the ferromagnetic F1 layer was made of Permalloy while for the F2 layer we have taken a specially prepared film of the Heusler alloy Co2Cr1-xFexAl with a small degree of spin polarization of the conduction band. The heterostructures demonstrate a significant superconducting spin-valve effect, i.e., a complete switching on and offof the superconducting current flowing through the system by manipulating the mutual orientations of the magnetization of the F1 and F2 layers. The magnitude of the effect is doubled in comparison with the previously studied analogous multilayers with the F2 layer made of the strong ferromagnet Fe. Theoretical analysis shows that a drastic enhancement of the switching effect is due to a smaller exchange field in the heterostructure coming from the Heusler film as compared to Fe. This enables to approach an almost ideal theoretical magnitude of the switching in the Heusler-based multilayer with a F2 layer thickness of ca. 1 nm. © 2018 Kamashev et al.
  • Item
    Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1-xFexAly spin-valve structure
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2019) Kamashev, A.A.; Garif'yanov, N.N.; Validov, A.A.; Schumann, J.; Kataev, V.; Büchner, B.; Fominov, Y.V.; Garifullin, I.A.
    We report the superconducting properties of the Co2Cr1-xFexAly/Cu/Ni/Cu/Pb spin-valve structure the magnetic part of which comprises the Heusler alloy layer HA = Co2Cr1-xFexAly with a high degree of spin polarization (DSP) of the conduction band and a Ni layer of variable thickness. The separation between the superconducting transition curves measured for the parallel (α = 0°) and perpendicular (α = 90°) orientation of the magnetization of the HA and the Ni layers reaches up to 0.5 K (α is the angle between the magnetization of two ferromagnetic layers). For all studied samples the dependence of the superconducting transition temperature Tc on α demonstrates a deep minimum in the vicinity of the perpendicular configuration of the magnetizations. This suggests that the observed minimum and the corresponding full switching effect of the spin valve is caused by the long-range triplet component of the superconducting condensate in the multilayer. Such a large effect can be attributed to a half-metallic nature of the HA layer, which in the orthogonal configuration efficiently draws off the spin-polarized Cooper pairs from the space between the HA and Ni layers. Our results indicate a significant potential of the concept of a superconducting spin-valve multilayer comprising a half-metallic ferromagnet, recently proposed by A. Singh et al., Phys. Rev. X 2015, 5, 021019, in achieving large values of the switching effect.
  • Item
    Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers
    (Bristol : Institute of Physics Publishing, 2019) Simmendinger, J.; Hanisch, J.; Bihler, M.; Ionescu, A.M.; Weigand, M.; Sieger, M.; Hühne, R.; Rijckaert, H.; Van Driessche, I.; Schütz, G.; Albrecht, J.
    We studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.
  • Item
    Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets
    (Bristol : Institute of Physics Publishing, 2018) Leonov, A.O.; Bogdanov, A.N.
    The coupling between angular (twisting) and longitudinal modulations arising near the ordering temperature of noncentrosymmetric ferromagnets strongly influences the structure of skyrmion states and their evolution in an applied magnetic field. In the precursor states of cubic helimagnets, a continuous transformation of skyrmion lattices into the saturated state is replaced by the first-order processes accompanied by the formation of multidomain states. Recently the effects imposed by dominant longitudinal modulations have been reported in bulk MnSi and FeGe. Similar phenomena can be observed in the precursor regions of cubic helimagnet epilayers and in easy-plane chiral ferromagnets (e.g. in the hexagonal helimagnet CrNb3S6).