Search Results

Now showing 1 - 10 of 10
  • Item
    High-order harmonic generation by polyatomic molecules
    (Bristol : IOP Publ., 2017) Odžak, S.; Hasović, E.; Milošević, D.B.
    We present a theory of high-order harmonic generation by arbitrary polyatomic molecules based on the molecular strong-field approximation (MSFA) in the framework of the S-matrix theory. A polyatomic molecule is modeled by an (N + 1)-particle system, which consists of N heavy atomic (ionic) centers and an electron. We derived various versions (with or without the dressing of the initial and/or final molecular state) of the MSFA. The general expression for the T-matrix element takes a simple form for neutral polyatomic molecules. We show the existence of the interference minima in the harmonic spectrum and explain these minima as a multiple-slit type of interference. This is illustrated by numerical examples for the nitrous oxide (N2O) molecule exposed to strong linearly polarized laser field.
  • Item
    Optimization of quantum trajectories driven by strong-field waveforms
    (College Park : American Institute of Physics Inc., 2014) Haessler, S.; Balciunas, T.; Fan, G.; Andriukaitis, G.; Pugžlys, A.; Baltuška, A.; Witting, T.; Squibb, R.; Zaïr, A.; Tisch, J.W.G.; Marangos; Chipperfield, L.E.
    Quasifree field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecondduration extreme ultaviolet emission in the process of high-harmonic generation. The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer and the efficient return of the launched electron trajectories. It has been predicted that these limits can be significantly exceeded by an appropriately ramped-up cycle shape [L. E. Chipperfield et al., Phys. Rev. Lett. 102, 063003 (2009)]. Here, we present an experimental realization of similar cycle-shaped waveforms and demonstrate control of the high-harmonic generation process on the single-atom quantum level via attosecond steering of the electron trajectories.With our improved optical cycles, we boost the field ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, 2 orders of magnitude enhancement of the generated extreme ultraviolet flux together with an increased spectral extension. This application, which is only one example of what can be achieved with cycle-shaped high-field light waves, has significant implications for attosecond spectroscopy and molecular self-probing.
  • Item
    Attosecond control of electron-ion recollision in high harmonic generation
    (Bristol : IOP, 2011) Gademann, G.; Kelkensberg, F.; Siu, W.K.; Johnsson, P.; Gaarde, M.B.; Schafer, K.J.; Vrakking, M.J.J.
    We show that high harmonic generation driven by an intense nearinfrared (IR) laser can be temporally controlled when an attosecond pulse train (APT) is used to ionize the generation medium, thereby replacing tunnel ionization as the first step in the well-known three-step model. New harmonics are formed when the ionization occurs at a well-defined time within the optical cycle of the IR field. The use of APT-created electron wave packets affords new avenues for the study and application of harmonic generation. In the present experiment, this makes it possible to study harmonic generation at IR intensities where tunnel ionization does not give a measurable signal.
  • Item
    Atomic processes in bicircular fields
    (Bristol : IOP Publ., 2016) Odžak, S.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate laser-assisted electron-ion recombination (LAR), high-order harmonic generation (HHG) and above-threshold ionization (ATI) of argon atoms by a bicircular laser field, which consists of two coplanar counter-rotating circularly polarized fields of frequencies rω and sω. The energy of soft x rays generated in the LAR process is analyzed as a function of the incident electron angle and numerical results of direct recombination of electrons with Ar+ ions are presented. We also present the results of HHG by a bicircular field and confirm the selection rules derived earlier for inert-gas atoms in a p ground state. We show that the photoelectron spectra in the ATI process, presented in the momentum plane, as well as the LAR spectra exhibit the same discrete rotational symmetry as the applied field.
  • Item
    Recent developments in R-matrix applications to molecular processes
    (Bristol : IOP Publ., 2015) Mašín, Zdeněk; Harvey, Alex; Houfek, Karel; Brambila, Danilo S.; Morales, Felipe; Gorfinkiel, Jimena D.; Tennyson, Jonathan; Smirnova, Olga
    We report on recent developments of the UKRmol suite, an implementation of the molecular R- matrix method and present examples of the calculations (e.g. electron scattering, photoionization, high harmonic generation, etc.) it has enabled.
  • Item
    Ultrafast optical excitations of metallic nanostructures: From light confinement to a novel electron source
    (College Park, MD : Institute of Physics Publishing, 2007) Ropers, C.; Elsaesser, T.; Cerullo, G.; Zavelani-Rossi, M.; Lienau, C.
    Combining ultrafast coherent spectroscopy with nano-optical microscopy techniques offers a wealth of new possibilities for exploring the structure and function of nanostructures. In this paper, we describe newly developed nano-optical methods based on short-pulse laser sources with durations in the 10 fs regime. These techniques are used to unravel some of the intricate dynamics of elementary excitations in metallic nanostructures. Specifically, we explore light localization and storage in plasmonic crystals, demonstrate field enhancement and second harmonic generation from metallic nanotips and describe a novel nanometre-sized source of electron pulses. The rapid progress in this area offers exciting new prospects for probing and controlling electron dynamics in metallic nanostructures with femtosecond temporal and nanometre spatial resolution. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Polarization-resolved second-harmonic generation imaging through a multimode fiber
    (Washington, DC : OSA, 2021) Cifuentes, Angel; Pikálek, Tomáš; Ondráčková, Petra; Amezcua-Correa, Rodrigo; Antonio-Lopez, José Enrique; Čižmár, Tomáš; Trägårdh, Johanna
    Multimode fiber-based endoscopes have recently emerged as a tool for minimally invasive endoscopy in tissue, at depths well beyond the reach of multiphoton imaging. Here, we demonstrate label-free second-harmonic generation (SHG) microscopy through such a fiber endoscope. We simultaneously fully control the excitation polarization state and the spatial distribution of the light at the fiber tip, and we use this to implement polarization-resolved SHG imaging, which allows imaging and identification of structural proteins such as collagen and myosin. We image mouse tail tendon and heart tissue, employing the endoscope at depths up to 1 mm, demonstrating that we can differentiate these structural proteins. This method has the potential for enabling instant and in situ diagnosis of tumors and fibrotic conditions in sensitive tissue with minimal damage.
  • Item
    Using the third state of matter: High harmonic generation from liquid targets
    (Bristol : IOP, 2014) Heissler, P.; Lugovoy, E.; Hörlein, R.; Waldecker, L.; Wenz, J.; Heigoldt, M.; Khrennikov, K.; Karsch, S.; Krausz, F.; Abel, B.; Tsakiris, G.D.
    High harmonic generation on solid and gaseous targets has been proven to be a powerful platform for the generation of attosecond pulses. Here we demonstrate a novel technique for the XUV generation on a smooth liquid surface target in vacuum, which circumvents the problem of low repetition rate and limited shot numbers associated with solid targets, while it maintains some of its merits. We employed atomically smooth, continuous liquid jets of water, aqueous salt solutions and ethanol that allow uninterrupted high harmonic generation due to the coherent wake emission mechanism for over 8 h. It has been found that the mechanism of plasma generation is very similar to that for smooth solid target surfaces. The vapor pressure around the liquid target in our setup has been found to be very low such that the presence of the gas phase around the liquid jet could be neglected.
  • Item
    Chirp-control of resonant high-order harmonic generation in indium ablation plumes driven by intense few-cycle laser pulses
    (Washington, DC : Optical Society of America, OSA, 2018) Abdelrahman, Z.; Khokhlova, M.A.; Walke, D.J.; Witting, T.; Zair, A.; Strelkov, V.V.; Marangos, J.P.; Tisch, J.W.G.
    We have studied high-order harmonic generation (HHG) in an indium ablation plume driven by intense few-cycle laser pulses centered at 775 nm as a function of the frequency chirp of the laser pulse. We found experimentally that resonant emission lines between 19.7 eV and 22.3 eV (close to the 13th and 15th harmonic of the laser) exhibit a strong, asymmetric chirp dependence, with pronounced intensity modulations. The chirp dependence is reproduced by our numerical time-dependent Schrödinger equation simulations of a resonant HHG by the model indium ion. As demonstrated with our separate simulations of HHG within the strong field approximation, the resonance can be understood in terms of the chirp-dependent HHG photon energy coinciding with the energy of an autoionizing state to ground state transition with high oscillator strength. This supports the validity of the general theory of resonant four-step HHG in the few-cycle limit.
  • Item
    Extended high-harmonic spectra through a cascade resonance in confined quantum systems
    (College Park, MD : APS, 2022) Zhang, Xiao; Zhu, Tao; Du, Hongchuan; Luo, Hong-Gang; van den Brink, Jeroen; Ray, Rajyavardhan
    The study of high-harmonic generation in confined quantum systems is vital to establishing a complete physical picture of harmonic generation from atoms and molecules to bulk solids. Based on a multilevel approach, we demonstrate how intraband resonances significantly influence the harmonic spectra via charge pumping to the higher subbands and thus redefine the cutoff laws. As a proof of principle, we consider the interaction of graphene nanoribbons, with zigzag as well as armchair terminations, and resonant fields polarized along the cross-ribbon direction. Here, this effect is particularly prominent due to many nearly equiseparated energy levels. In such a scenario, a cascade resonance effect can take place in high-harmonic generation when the field strength is above a critical threshold, which is completely different from the harmonic generation mechanism of atoms, molecules, and bulk solids. We further discuss the implications not only for other systems in a nanoribbon geometry, but also systems where only a few subbands (energy levels) meet this frequency-matching condition by considering a generalized multilevel Hamiltonian. Our study highlights that cascade resonance has a fundamentally distinct influence on the laws of harmonic generation, specifically the cutoff laws based on laser duration, field strength, and wavelength, thus unraveling additional insights in solid-state high-harmonic generation.