8 results
Search Results
Now showing 1 - 8 of 8
- ItemInfluence of chemical interactions on the electronic properties of BiOI/organic semiconductor heterojunctions for application in solution-processed electronics(London [u.a.] : RSC, 2023) Lapalikar, Vaidehi; Dacha, Preetam; Hambsch, Mike; Hofstetter, Yvonne J.; Vaynzof, Yana; Mannsfeld, Stefan C. B.; Ruck, MichaelBismuth oxide iodide (BiOI) has been viewed as a suitable environmentally-friendly alternative to lead-halide perovskites for low-cost (opto-)electronic applications such as photodetectors, phototransistors and sensors. To enable its incorporation in these devices in a convenient, scalable, and economical way, BiOI thin films were investigated as part of heterojunctions with various p-type organic semiconductors (OSCs) and tested in a field-effect transistor (FET) configuration. The hybrid heterojunctions, which combine the respective functionalities of BiOI and the OSCs were processed from solution under ambient atmosphere. The characteristics of each of these hybrid systems were correlated with the physical and chemical properties of the respective materials using a concept based on heteropolar chemical interactions at the interface. Systems suitable for application in lateral transport devices were identified and it was demonstrated how materials in the hybrids interact to provide improved and synergistic properties. These indentified heterojunction FETs are a first instance of successful incorporation of solution-processed BiOI thin films in a three-terminal device. They show a significant threshold voltage shift and retained carrier mobility compared to pristine OSC devices and open up possibilities for future optoelectronic applications.
- ItemEpitaxial synthesis of unintentionally doped p-type SnO (001) via suboxide molecular beam epitaxy(Melville, NY : AIP, 2023) Egbo, Kingsley; Luna, Esperanza; Lähnemann, Jonas; Hoffmann, Georg; Trampert, Achim; Grümbel, Jona; Kluth, Elias; Feneberg, Martin; Goldhahn, Rüdiger; Bierwagen, OliverBy employing a mixed SnO2 + Sn source, we demonstrate suboxide molecular beam epitaxy (S-MBE) growth of phase-pure single-crystalline metastable SnO (001) thin films on Y-stabilized ZrO2 (001) substrates at a growth rate of ∼1.0 nm/min without the need for additional oxygen. These films grow epitaxially across a wide substrate temperature range from 150 to 450 °C. Hence, we present an alternative pathway to overcome the limitations of high Sn or SnO2 cell temperatures and narrow growth windows encountered in previous MBE growth of metastable SnO. In situ laser reflectometry and line-of-sight quadrupole mass spectrometry were used to investigate the rate of SnO desorption as a function of substrate temperature. While SnO ad-molecule desorption at TS = 450 °C was growth-rate limiting, the SnO films did not desorb at this temperature after growth in vacuum. The SnO (001) thin films are transparent and unintentionally p-type doped, with hole concentrations and mobilities in the range of 0.9-6.0 × 1018 cm-3 and 2.0-5.5 cm2 V-1 s-1, respectively. These p-type SnO films obtained at low substrate temperatures are promising for back-end-of-line (BEOL) compatible applications and for integration with n-type oxides in pn heterojunctions and field-effect transistors.
- ItemEngineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructures(College Park, MD : Institute of Physics Publishing, 2008) Schroetter, T.; Zaumseil, P.; Seifarth, O.; Giussani, A.; Müssig, H.-J.; Storck, P.; Geiger, D.; Lichte, H.; Dabrowski, J.The integration of alternative semiconductor layers on the Si material platform via oxide heterostructures is of interest to increase the performance and/or functionality of future Si-based integrated circuits. The single crystalline quality of epitaxial (epi) semiconductor-insulator-Si heterostructures is however limited by too high defect densities, mainly due to a lack of knowledge about the fundamental physics of the heteroepitaxy mechanisms at work. To shed light on the physics of stacking twin formation as one of the major defect mechanisms in (111)-oriented fcc-related heterostructures on Si(111), we report a detailed experimental and theoretical study on the structure and defect properties of epi-Si(111)/Y2O 3/Pr2O3/Si(111) heterostructures. Synchrotron radiation-grazing incidence x-ray diffraction (SR-GIXRD) proves that the engineered Y2O3/Pr2O3 buffer dielectric heterostructure on Si(111) allows control of the stacking sequence of the overgrowing single crystalline epi-Si(111) layers. The epitaxy relationship of the epi-Si(111)/insulator/Si(111) heterostructure is characterized by a type A/B/A stacking configuration. Theoretical ab initio calculations show that this stacking sequence control of the heterostructure is mainly achieved by electrostatic interaction effects across the ionic oxide/covalent Si interface (IF). Transmission electron microscopy (TEM) studies detect only a small population of misaligned type B epi-Si(111) stacking twins whose location is limited to the oxide/epiSi IF region. Engineering the oxide/semiconductor IF physics by using tailored oxide systems opens thus a promising approach to grow heterostructures with well-controlled properties. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
- ItemA novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures(College Park, MD : Institute of Physics Publishing, 2010) Giussani, A.; Zaumseil, P.; Seifarth, O.; Storck, P.; Schroeder, T.Epitaxial (epi) oxides on silicon can be used to integrate novel device concepts on the canonical Si platform, including functional oxides, e.g. multiferroics, as well as alternative semiconductor approaches. For all these applications, the quality of the oxide heterostructure is a key figure of merit. In this paper, it is shown that, by co-evaporating Y2O3 and Pr2O3 powder materials, perfectly lattice-matched PrYO3(111) epilayers with bixbyite structure can be grown on Si(111) substrates. A high-resolution x-ray diffraction analysis demonstrates that the mixed oxide epi-films are single crystalline and type B oriented. Si epitaxial overgrowth of the PrYO3(111)/Si(111) support system results in flat, continuous and fully lattice-matched epi-Si(111)/PrYO3(111)/Si(111) silicon-on-insulator heterostructures. Raman spectroscopy proves the strain-free nature of the epi-Si films. A Williamson-Hall analysis of the mixed oxide layer highlights the existence of structural defects in the buffer, which can be explained by the thermal expansion coefficients of Si and PrYO3. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
- ItemElectron tomography of (In,Ga)N insertions in GaN nanocolumns grown on semi-polar (112̄ 2) GaN templates(New York : American Institute of Physics, 2015) Niehle, M.; Trampert, A.; Albert, S.; Bengoechea-Encabo, A.; Calleja, E.We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN( 11 2 ̄ 2 ) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.
- ItemResearch Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures(New York : American Institute of Physics, 2016) Duschek, K.; Pohl, D.; Fähler, S.; Nielsch, K.; Leistner, K.Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L10 FePt(001) underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial Fe3O4/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.
- ItemNon-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applications(London : Springer Nature, 2021) Aktas, Ozan; Yamamoto, Yuji; Kaynak, Mehmet; Peacock, Anna C.Advanced solid-state devices, including lasers and modulators, require semiconductor heterostructures for nanoscale engineering of the electronic bandgap and refractive index. However, existing epitaxial growth methods are limited to fabrication of vertical heterostructures grown layer by layer. Here, we report the use of finite-element-method-based phase-field modelling with thermocapillary convection to investigate laser inscription of in-plane heterostructures within silicon-germanium films. The modelling is supported by experimental work using epitaxially-grown Si0.5Ge0.5 layers. The phase-field simulations reveal that various in-plane heterostructures with single or periodic interfaces can be fabricated by controlling phase segregation through modulation of the scan speed, power, and beam position. Optical simulations are used to demonstrate the potential for two devices: graded-index waveguides with Ge-rich (>70%) cores, and waveguide Bragg gratings with nanoscale periods (100–500 nm). Periodic heterostructure formation via sub-millisecond modulation of the laser parameters opens a route for post-growth fabrication of in-plane quantum wells and superlattices in semiconductor alloy films.
- ItemIncreasing the performance of a superconducting spin valve using a Heusler alloy(Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Kamashev, A.A.; Validov, A.A.; Schumann, J.; Kataev, V.; Büchner, B.; Fominov, Y.V.; Garifullin, I.A.We have studied superconducting properties of spin-valve thin-layer heterostructures CoOx/F1/Cu/F2/Cu/Pb in which the ferromagnetic F1 layer was made of Permalloy while for the F2 layer we have taken a specially prepared film of the Heusler alloy Co2Cr1-xFexAl with a small degree of spin polarization of the conduction band. The heterostructures demonstrate a significant superconducting spin-valve effect, i.e., a complete switching on and offof the superconducting current flowing through the system by manipulating the mutual orientations of the magnetization of the F1 and F2 layers. The magnitude of the effect is doubled in comparison with the previously studied analogous multilayers with the F2 layer made of the strong ferromagnet Fe. Theoretical analysis shows that a drastic enhancement of the switching effect is due to a smaller exchange field in the heterostructure coming from the Heusler film as compared to Fe. This enables to approach an almost ideal theoretical magnitude of the switching in the Heusler-based multilayer with a F2 layer thickness of ca. 1 nm. © 2018 Kamashev et al.