Search Results

Now showing 1 - 2 of 2
  • Item
    Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis
    (Bristol : IOP Publ., 2018) Lehnert, J.; Spemann, D.; Surjuse, S.; Mensing, M.; Grüner, C.; With, P.; Schumacher, P.; Finzel, A.; Hirsch, D.; Rauschenbach, B.
    This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number).
  • Item
    Control of etch pit formation for epitaxial growth of graphene on germanium
    (Melville, NY : American Inst. of Physics, 2019) Becker, Andreas; Wenger, Christian; Dabrowski, Jarek
    Graphene epitaxy on germanium by chemical vapor deposition is a promising approach to integrate graphene into microelectronics, but the synthesis is still accompanied by several challenges such as the high process temperature, the reproducibility of growth, and the formation of etch pits during the process. We show that the substrate cleaning by preannealing in molecular hydrogen, which is crucial to successful and reproducible graphene growth, requires a high temperature and dose. During both substrate cleaning and graphene growth, etch pits can develop under certain conditions and disrupt the synthesis process. We explain the mechanisms how these etch pits may form by preferential evaporation of substrate, how substrate topography is related to the state of the cleaning process, and how etch pit formation during graphene growth can be controlled by choice of a sufficiently high precursor flow. Our study explains how graphene can be grown reliably on germanium at high temperature and thereby lays the foundation for further optimization of the growth process. © 2019 Author(s).