Search Results

Now showing 1 - 3 of 3
  • Item
    Analysis of electronic properties frommagnetotransport measurements on Ba(Fe1-xNix)2As2 thin films
    (Basel : MDPI AG, 2020) Shipulin, I.; Richter, S.; Thomas, A.A.; Nielsch, K.; Hühne, R.; Martovitsky, V.
    We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.
  • Item
    Linkage between scattering rates and superconductivity in doped ferropnictides
    (Woodbury, NY : Inst., 2021) Fink, J.; Rienks, E.D.L.; Yao, M.; Kurleto, R.; Bannies, J.; Aswartham, S.; Morozov, I.; Wurmehl, S.; Wolf, T.; Hardy, F.; Meingast, C.; Jeevan, H.S.; Maiwald, J.; Gegenwart, P.; Felser, C.; Buechner, B.
    We report an angle-resolved photoemission study of a series of hole- and electron-doped iron-based superconductors, their parent compound BaFe2As2, and their cousins BaCr2As2 and BaCo2As2. We focus on the inner hole pocket, which is the hot spot in these compounds. More specifically, we determine the energy (E)-dependent scattering rate Γ(E) as a function of the 3d count. Moreover, for the compounds K0.4Ba0.6Fe2As2 and BaCr2As2, we derive the energy dependence of the renormalization function Z(E) and the imaginary part of the self-energy function ImΣ(E). We obtain a non-Fermi liquidlike linear in energy scattering rate Γ(E≫kBT), independent of the dopant concentration. The main result is that the slope β=Γ(E≫kBT)/E reaches its maxima near optimal doping and scales with the superconducting transition temperature. This supports the spin fluctuation model for superconductivity for these materials. In the optimally hole-doped compound, the slope of the scattering rate of the inner hole pocket is about three times bigger than the Planckian limit Γ(E)/E≈1. This result, together with the energy dependence of the renormalization function Z(E), signals very incoherent charge carriers in the normal state which transform at low temperatures to a coherent unconventional superconducting state.
  • Item
    Josephson and tunneling junctions with thin films of iron based superconductors
    (Amsterdam [u.a.] : Elsevier, 2012) Schmidt, S.; Döring, S.; Tympel, V.; Schmidl, F.; Haindl, S.; Iida, K.; Holzapfel, B.; Seidel, P.
    We produced planar hybrid Superconductor - Normal metal - Superconductor (SNS') junctions and interfaceengineered edge junctions (SN'S' or SIS' with normal metal (N') or insulating (I) barrier) with various areas using Co-doped Ba-122 as base electrode. Varying the thickness of the Normal metal (gold) barrier of the planar junctions, we can either observe Josephson behavior at thinner gold thicknesses or transport dominated by Andreev reflection. The edge junctions seem to form a SN'S'-contact.