Search Results

Now showing 1 - 2 of 2
  • Item
    Terahertz stimulated emission from silicon doped by hydrogenlike acceptors
    (College Park : American Institute of Physics Inc., 2014) Pavlov, S.G.; Deßmann, N.; Shastin, V.N.; Zhukavin, R.K.; Redlich, B.; van der Meer, A.F.G.; Mittendorff, M.; Winnerl, S.; Abrosimov, N.V.; Riemann, H.; Hübers, H.-W.
    Stimulated emission in the terahertz frequency range has been realized from boron acceptor centers in silicon. Population inversion is achieved at resonant optical excitation on the 1Λ8+ → 1Λ7- , 1Λ6-, 1Λ8- intracenter transitions with a midinfrared free-electron laser. Lasing occurs on two intracenter transitions around 1.75 THz. The upper laser levels are the 1Λ7- , 1Λ6- , and 1Λ8- states, and the lower laser level for both emission lines is the 2Λ8+ state. In contrast to n-type intracenter silicon lasers, boron-doped silicon lasers do not involve the excited states with the longest lifetimes. Instead, the absorption cross section for the pump radiation is the dominating factor. The four-level lasing scheme implies that the deepest even-parity boron state is the 2Λ8+ state and not the 1Λ7+ split-off ground state, as indicated by other experiments. This is confirmed by infrared absorption spectroscopy of Si:B.
  • Item
    Phosphate Vibrations Probe Electric Fields in Hydrated Biomolecules: Spectroscopy, Dynamics, and Interactions
    (Washington, DC : Soc., 2021) Elsaesser, Thomas; Schauss, Jakob; Kundu, Achintya; Fingerhut, Benjamin P.
    Electric interactions have a strong impact on the structure and dynamics of biomolecules in their native water environment. Given the variety of water arrangements in hydration shells and the femto- to subnanosecond time range of structural fluctuations, there is a strong quest for sensitive noninvasive probes of local electric fields. The stretching vibrations of phosphate groups, in particular the asymmetric (PO2)− stretching vibration νAS(PO2)−, allow for a quantitative mapping of dynamic electric fields in aqueous environments via a field-induced redshift of their transition frequencies and concomitant changes of vibrational line shapes. We present a systematic study of νAS(PO2)− excitations in molecular systems of increasing complexity, including dimethyl phosphate (DMP), short DNA and RNA duplex structures, and transfer RNA (tRNA) in water. A combination of linear infrared absorption, two-dimensional infrared (2D-IR) spectroscopy, and molecular dynamics (MD) simulations gives quantitative insight in electric-field tuning rates of vibrational frequencies, electric field and fluctuation amplitudes, and molecular interaction geometries. Beyond neat water environments, the formation of contact ion pairs of phosphate groups with Mg2+ ions is demonstrated via frequency upshifts of the νAS(PO2)− vibration, resulting in a distinct vibrational band. The frequency positions of contact geometries are determined by an interplay of attractive electric and repulsive exchange interactions.