Search Results

Now showing 1 - 2 of 2
  • Item
    Mechanical properties and twin boundary drag in Fe-Pd ferromagnetic shape memory foils-experiments and ab initio modeling
    (Bristol : IOP, 2011) Claussen, I.; Mayr, S.G.
    We report on vibrating reed measurements combined with density functional theory-based calculations to assess the elastic and damping properties of Fe-Pd ferromagnetic shape memory alloy splats. While the austenite-martensite phase transformation is generally accompanied by lattice softening, a severe modulus defect and elevated damping behavior are characteristic of the martensitic state. We interpret the latter in terms of twin boundary motion between pinning defects via partial 'twinning' dislocations. Energy dissipation is governed by twin boundary drag, primarily due to lattice imperfections, as concluded from the temperature dependence of damping and related activation enthalpies.
  • Item
    Ion-irradiation-assisted tuning of phase transformations and physical properties in single crystalline Fe7Pd3ferromagnetic shape memory alloy thin films
    ([London] : IOP, 2015) Arabi-Hashemi, A.; Witte, R.; Lotnyk, A.; Brand, R.A.; Setzer, A.; Esquinazi, P.; Hahn, H.; Averback, R.S.; Mayr, S.G.
    Control of multi-martensite phase transformations and physical properties constitute greatly unresolved challenges in Fe7Pd3-based ferromagnetic shape memory alloys. Single crystalline Fe7Pd3 thin films reveal an austenite to martensite phase transformation, continuously ranging from the face-centered cubic (fcc) to the face-centered tetragonal (fct) and body-centered cubic (bcc) phases upon irradiation with 1.8 MeV Kr+ ions. Within the present contribution, we explore this scenario within a comprehensive experimental study: employing atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM), we first clarify the crystallography of the ion-irradiation-induced austenite $\Rightarrow $ martensite and inter-martensite transitions, explore the multi-variant martensite structures with c-a twinning and unravel a very gradual transition between variants at twin boundaries. Accompanying magnetic properties, addressed locally and globally, are characterized by an increasing saturation magnetization from fcc to bcc, while coercivity and remanence are demonstrated to be governed by magnetocrystalline anisotropy and ion-irradiation-induced defect density, respectively. Based on reversibility of ion-irradiation-induced materials changes due to annealing treatment and a conversion electron Mößbauer spectroscopy (CEMS) study to address changes in order, a quantitative defect-based physical picture of ion-irradiation-induced austenite ⇔ martensite transformation in Fe7Pd3 is developed. The presented concepts thus pave the way for ion-irradiation-assisted optimization strategies for tailored functional alloys.