Search Results

Now showing 1 - 2 of 2
  • Item
    Investigations of long-term trends in the ionosphere with world-wide ionosonde observations
    (München : European Geopyhsical Union, 2014) Bremer, J.
    Basing on model calculations by Roble and Dickinson (1989) for an increasing content of atmospheric greenhouse gases in the Earth’s atmosphere Rishbeth (1990) predicted a lowering of the ionospheric F2- and E-regions. Later Rishbeth and Roble (1992) also predicted characteristic longterm changes of the maximum electron density values of the ionospheric E-, F1-, and F2-layers. Long-term observations at more than 100 ionosonde stations have been analyzed to test these model predictions. In the E- and F1-layers the derived experimental results agree reasonably with the model trends (lowering of h'E and increase of ƒoE and ƒoF1, in the E-layer the experimental values are however markedly stronger than the model data). In the ionospheric F2-region the variability of the trends derived at the different individual stations for hmF2 as well as ƒoF2 values is too large to estimate reasonable global mean trends. The reason of the large differences between the individual trends is not quite clear. Strong dynamical effects may play an important role in the F2-region. But also inhomogeneous data series due to technical changes as well as changes in the evaluation algorithms used during the long observation periods may influence the trend analyses.
  • Item
    Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO 2 nanospheres in intense few-cycle laser fields
    (Bristol : IOP, 2012) Zherebtsov, S.; Süßmann, F.; Peltz, C.; Plenge, J.; Betsch, K.J.; Znakovskaya, I.; Alnaser, A.S.; Johnson, N.G.; Kübel, M.; Horn, A.; Mondes, V.; Graf, C.; Trushin, S.A.; Azzeer, A.; Vrakking, M.J.J.; Paulus, G.G.; Krausz, F.; Rühl, E.; Fennel, T.; Kling, M.F.
    Waveform-controlled light fields offer the possibility of manipulating ultrafast electronic processes on sub-cycle timescales. The optical lightwave control of the collective electron motion in nanostructured materials is key to the design of electronic devices operating at up to petahertz frequencies. We have studied the directional control of the electron emission from 95 nm diameter SiO 2 nanoparticles in few-cycle laser fields with a well-defined waveform. Projections of the three-dimensional (3D) electron momentum distributions were obtained via single-shot velocity-map imaging (VMI), where phase tagging allowed retrieving the laser waveform for each laser shot. The application of this technique allowed us to efficiently suppress background contributions in the data and to obtain very accurate information on the amplitude and phase of the waveform-dependent electron emission. The experimental data that are obtained for 4 fs pulses centered at 720 nm at different intensities in the range (1-4)×10 13Wcm -2 are compared to quasi-classical mean-field Monte-Carlo simulations. The model calculations identify electron backscattering from the nanoparticle surface in highly dynamical localized fields as the main process responsible for the energetic electron emission from the nanoparticles. The local field sensitivity of the electron emission observed in our studies can serve as a foundation for future research on propagation effects for larger particles and field-induced material changes at higher intensities.