Search Results

Now showing 1 - 4 of 4
  • Item
    Nanometer-resolved mechanical properties around GaN crystal surface steps
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Buchwald, J.; Sarmanova, M.; Rauschenbach, B.; Mayr, S.G.
    The mechanical properties of surfaces and nanostructures deviate from their bulk counterparts due to surface stress and reduced dimensionality. Experimental indentation-based techniques present the challenge of measuring these effects, while avoiding artifacts caused by the measurement technique itself. We performed a molecular dynamics study to investigate the mechanical properties of a GaN step of only a few lattice constants step height and scrutinized its applicability to indentation experiments using a finite element approach (FEM). We show that the breakdown of half-space symmetry leads to an "artificial" reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results with experiments.
  • Item
    Structural defects in Fe-Pd-based ferromagnetic shape memory alloys: Tuning transformation properties by ion irradiation and severe plastic deformation
    (Bristol : IOP, 2012) Mayr, S.G.; Arabi-Hashemi, A.
    Fe-Pd-based ferromagnetic shape memory alloys constitute an exciting class of magnetically switchable smart materials that reveal excellent mechanical properties and biocompatibility. However, their application is severely hampered by a lack of understanding of the physics at the atomic scale. A many-body potential is presented that matched ab inito calculations and can account for the energetics of martensite ↔ austenite transition along the Bain path and relative phase stabilities in the ordered and disordered phases of Fe-Pd. Employed in massively parallel classical molecular dynamics simulations, the impact of order/disorder, point defects and severe plastic deformation in the presence of single- and polycrystalline microstructures are explored as a function of temperature. The model predictions are in agreement with experiments on phase changes induced by ion irradiation, cold rolling and hammering, which are also presented.
  • Item
    Epitaxial growth and stress relaxation of vapor-deposited Fe-Pd magnetic shape memory films
    (College Park, MD : Institute of Physics Publishing, 2009) Kühnemund, L.; Edler, T.; Kock, I.; Seibt, M.; Mayr, S.G.
    To achieve maximum performance in microscale magnetic shape memory actuation devices epitaxial films several hundred nanometers thick are needed. Epitaxial films were grown on hot MgO substrates (500 °C and above) by e-beam evaporation. Structural properties and stress relaxation mechanisms were investigated by high-resolution transmission electron microscopy, in situ substrate curvature measurements and classical molecular dynamics (MD) simulations. The high misfit stress incorporated during Vollmer-Weber growth at the beginning was relaxed by partial or perfect dislocations depending on the substrate temperature. This relaxation allowed the avoidance of a stressinduced breakdown of epitaxy and no thickness limit for epitaxy was found. For substrate temperatures of 690 °C or above, the films grew in the fee austenite phase. Below this temperature, iron precipitates were formed. MD simulations showed how these precipitates influence the movements of partial dislocations, and can thereby explain the higher stress level observed in the experiments in the initial stage of growth for these films. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Dynamics and diffusive-conformational coupling in polymer bulk samples and surfaces: A molecular dynamics study
    (College Park, MD : Institute of Physics Publishing, 2010) Vree., C.; Mayr, S.G.
    The impact of free surfaces on the mobility and conformational fluctuations of model polymer chains is investigated with the help of classical molecular dynamics simulations over a broad temperature range. Below a critical temperature, T *, similar to the critical temperature of the mode coupling theory, the center-of-mass displacements and temporal fluctuations of the radius of gyration of individual chains-as a fingerprint of structural reconfigurations-reveal a strong enhancement close to surfaces, while this effect diminishes with increasing temperature and observation time. Interpreting conformational fluctuations as a random walk in conformational space, identical activation enthalpies for structural reconfigurations and diffusion are obtained within the error bars in the bulk and at the surfaces, thus indicating a coupling of diffusive and conformational dynamics. © IOP Publishing Ltd. and Deutsche Physikalische Gesellschaft.