Search Results

Now showing 1 - 3 of 3
  • Item
    The HITRAN2020 molecular spectroscopic database
    (New York, NY [u.a.] : Elsevier, 2022) Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; Wcisło, P.; Finenko, A.A.; Nelson, K.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; Coustenis, A.; Drouin, B.J.; Flaud, J.M.; Gamache, R.R.; Hodges, J.T.; Jacquemart, D.; Mlawer, E.J.; Nikitin, A.V.; Perevalov, V.I.; Rotger, M.; Tennyson, J.; Toon, G.C.; Tran, H.; Tyuterev, V.G.; Adkins, E.M.; Baker, A.; Barbe, A.; Canè, E.; Császár, A.G.; Dudaryonok, A.; Egorov, O.; Fleisher, A.J.; Fleurbaey, H.; Foltynowicz, A.; Furtenbacher, T.; Harrison, J.J.; Hartmann, J.M.; Horneman, V.M.; Huang, X.; Karman, T.; Karns, J.; Kassi, S.; Kleiner, I.; Kofman, V.; Kwabia-Tchana, F.; Lavrentieva, N.N.; Lee, T.J.; Long, D.A.; Lukashevskaya, A.A.; Lyulin, O.M.; Makhnev, V.Yu.; Matt, W.; Massie, S.T.; Melosso, M.; Mikhailenko, S.N.; Mondelain, D.; Müller, H.S.P.; Naumenko, O.V.; Perrin, A.; Polyansky, O.L.; Raddaoui, E.; Raston, P.L.; Reed, Z.D.; Rey, M.; Richard, C.; Tóbiás, R.; Sadiek, I.; Schwenke, D.W.; Starikova, E.; Sung, K.; Tamassia, F.; Tashkun, S.A.; Vander Auwera, J.; Vasilenko, I.A.; Vigasin, A.A.; Villanueva, G.L.; Vispoel, B.; Wagner, G.; Yachmenev, A.; Yurchenko, S.N.
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  • Item
    Experimental strategies for optical pump - Soft x-ray probe experiments at the LCLS
    (Bristol : Institute of Physics Publishing, 2014) McFarland, B.K.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.H.; Castagna, J.C.; Coffee, R.N.; Cryan, J.P.; Fang, L.; Farrell, J.P.; Feifel, R.; Gaffney, K.J.; Glownia, J.M.; Martinez, T.J.; Miyabe, S.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovic, V.S.; Schorb, S.; Schultz, T.; Spector, L.S.; Swiggers, M.; Tarantelli, F.; Tenney, I.; Wang, S.; White, J.L.; White, W.; Gühr, M.
    Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast molecular studies due to the short pulse durations and site/element sensitivity in this spectral range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We show how we mitigate the effects of source noise for the case of ultrafast molecular spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to increase time and spectral resolution. In addition, choosing observables independent of noisy beam parameters enhances the signal fidelity.
  • Item
    Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers
    (College Park, MD : Institute of Physics Publishing, 2008) Pietzsch, A.; Föhlisch, A.; Beye, M.; Deppe, M.; Hennies, F.; Nagasono, M.; Suljotil, E.; Wurth, W.; Gahl, C.; Dörich, K.; Melnikov, A.
    We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.