Search Results

Now showing 1 - 2 of 2
  • Item
    Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states
    (Washington, DC : American Chemical Society, 2014) Schell, A.W.; Engel, P.; Werra, J.F.M.; Wolff, C.; Busch, K.; Benson, O.
    Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.
  • Item
    Simultaneous magnetic field and field gradient mapping of hexagonal MnNiGa by quantitative magnetic force microscopy
    (London : Springer Nature, 2023) Freitag, Norbert H.; Reiche, Christopher F.; Neu, Volker; Devi, Parul; Burkhardt, Ulrich; Felser, Claudia; Wolf, Daniel; Lubk, Axel; Büchner, Bernd; Mühl, Thomas
    Magnetic force microscopy (MFM) is a scanning microscopy technique that is commonly employed to probe the sample’s magnetostatic stray fields via their interaction with a magnetic probe tip. In this work, a quantitative, single-pass MFM technique is presented that maps one magnetic stray-field component and its spatial derivative at the same time. This technique uses a special cantilever design and a special high-aspect-ratio magnetic interaction tip that approximates a monopole-like moment. Experimental details, such as the control scheme, the sensor design, which enables simultaneous force and force gradient measurements, as well as the potential and limits of the monopole description of the tip moment are thoroughly discussed. To demonstrate the merit of this technique for studying complex magnetic samples it is applied to the examination of polycrystalline MnNiGa bulk samples. In these experiments, the focus lies on mapping and analyzing the stray-field distribution of individual bubble-like magnetization patterns in a centrosymmetric [001] MnNiGa phase. The experimental data is compared to calculated and simulated stray-field distributions of 3D magnetization textures, and, furthermore, bubble dimensions including diameters are evaluated. The results indicate that the magnetic bubbles have a significant spatial extent in depth and a buried bubble top base.