Search Results

Now showing 1 - 2 of 2
  • Item
    Wafer-level uniformity of atomic-layer-deposited niobium nitride thin films for quantum devices
    (New York, NY : Inst., 2021) Knehr, Emanuel; Ziegler, Mario; Linzen, Sven; Ilin, Konstantin; Schanz, Patrick; Plentz, Jonathan; Diegel, Marco; Schmidt, Heidemarie; Il’iche, Evgeni; Siegel, Michael
    Superconducting niobium nitride thin films are used for a variety of photon detectors, quantum devices, and superconducting electronics. Most of these applications require highly uniform films, for instance, when moving from single-pixel detectors to arrays with a large active area. Plasma-enhanced atomic layer deposition (ALD) of superconducting niobium nitride is a feasible option to produce high-quality, conformal thin films and has been demonstrated as a film deposition method to fabricate superconducting nanowire single-photon detectors before. Here, we explore the property spread of ALD-NbN across a 6-in. wafer area. Over the equivalent area of a 2-in. wafer, we measure a maximum deviation of 1% in critical temperature and 12% in switching current. Toward larger areas, structural characterizations indicate that changes in the crystal structure seem to be the limiting factor rather than film composition or impurities. The results show that ALD is suited to fabricate NbN thin films as a material for large-area detector arrays and for new detector designs and devices requiring uniform superconducting thin films with precise thickness control.
  • Item
    Thermally induced evolution of the structure and optical properties of silicon nanowires
    (Amsterdam [u.a.] : Elsevier, 2020) Mussabek, Gauhar; Lysenko, Vladimir; Yermukhamed, Dana; Sivakov, Vladimir; Yu. Timoshenko, Victor
    In the present paper, we report on the investigation of thermal annealing (TA) effect on structural and optical properties of crystalline silicon nanowires produced by metal-assisted chemical etching approach. In particular, the impact of TA on nanowire length, relative volume and size distribution of voids is described in terms of Lifshitz-Slyozov-Wagner theory considering the TA induced Oswald ripening in the SiNW arrays. It was also found that TA leads to a decrease of the SiNWs total reflection in the wide UV–VIS-IR spectral range. The reported effects can be used for tuning of crystalline SiNWs arrays in view of their further applications in photonics related fields. © 2020 The Authors