Search Results

Now showing 1 - 3 of 3
  • Item
    Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder
    (Weinheim : Wiley-VCH Verlag, 2020) Hartmann, Wladick; Varytis, Paris; Gehring, Helge; Walter, Nicolai; Beutel, Fabian; Busch, Kurt; Pernice, Wolfram
    Compact, on-chip spectrometers exploiting tailored disorder for broadband light scattering enable high-resolution signal analysis while maintaining a small device footprint. Due to multiple scattering events of light in the disordered medium, the effective path length of the device is significantly enhanced. Here, on-chip spectrometers are realized for visible and near-infrared wavelengths by combining an efficient broadband fiber-to-chip coupling approach with a scattering area in a broadband transparent silicon nitride waveguiding structure. Air holes etched into a structured silicon nitride slab terminated with multiple waveguides enable multipath light scattering in a diffusive regime. Spectral-to-spatial mapping is performed by determining the transmission matrix at the waveguide outputs, which is then used to reconstruct the probe signals. Direct comparison with theoretical analyses shows that such devices can be used for high-resolution spectroscopy from the visible up to the telecom wavelength regime. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Selective area growth of AlGaN nanopyramid arrays on graphene by metal-organic vapor phase epitaxy
    (Melville, NY : American Inst. of Physics, 2018) Munshi, A. Mazid; Kim, Dong-Chul; Heimdal, Carl Philip; Heilmann, Martin; Christiansen, Silke H.; Vullum, Per Erik; van Helvoort, Antonius T. J.; Weman, Helge
    Wide-bandgap group III-nitride semiconductors are of special interest for applications in ultraviolet light emitting diodes, photodetectors, and lasers. However, epitaxial growth of high-quality III-nitride semiconductors on conventional single-crystalline substrates is challenging due to the lattice mismatch and differences in the thermal expansion coefficients. Recently, it has been shown that graphene, a two-dimensional material, can be used as a substrate for growing high-quality III-V semiconductors via quasi-van der Waals epitaxy and overcome the named challenges. Here, we report selective area growth of AlGaN nanopyramids on hole mask patterned single-layer graphene using metal-organic vapor phase epitaxy. The nanopyramid bases have a hexagonal shape with a very high nucleation yield. After subsequent AlGaN/GaN/AlGaN overgrowth on the six {10 (1) over bar1} semi-polar side facets of the nanopyramids, intense room-temperature cathodoluminescence emission is observed at 365 nm with whispering gallery-like modes. This work opens up a route for achieving III-nitride opto-electronic devices on graphene substrates in the ultraviolet region for future applications.
  • Item
    Dynamically tuned non-classical light emission from atomic defects in hexagonal boron nitride
    (London : Springer Nature, 2019) Lazić, Snežana; Espinha, André; Yanguas, Sergio Pinilla; Gibaja, Carlos; Zamora, Félix; Ares, Pablo; Chhowalla, Manish; Paz, Wendel S.; Palacios Burgos, Juan José; Hernández-Mínguez, Alberto; Santos, Paulo V.; van der Meulen, Herko P.
    Luminescent defects in hexagonal boron nitride (h-BN) have recently emerged as a promising platform for non-classical light emission. On-chip solutions, however, require techniques for controllable in-situ manipulation of quantum light. Here, we demonstrate the dynamic spectral and temporal tuning of the optical emission from h-BN via moving acousto-mechanical modulation induced by stimulated phonons. When perturbed by the propagating acoustic phonon, the optically probed radiative h-BN defects are periodically strained and their sharp emission lines are modulated by the deformation potential coupling. This results in an acoustically driven spectral tuning within a 2.5-meV bandwidth. Our findings, supported by first-principles theoretical calculations, reveal exceptionally high elasto-optic coupling in h-BN of ~50 meV/%. Temporal control of the emitted photons is achieved by combining the acoustically mediated fine-spectral tuning with spectral detection filtering. This study opens the door to the use of sound for scalable integration of h-BN emitters in nanophotonic and quantum information technologies. © 2019, The Author(s).