Search Results

Now showing 1 - 3 of 3
  • Item
    Author Correction: Ultrafast X-ray imaging of the light-induced phase transition in VO2 (Nature Physics, (2022), 10.1038/s41567-022-01848-w)
    (Basingstoke : Nature Publishing Group, 2023) Johnson, Allan S.; Perez-Salinas, Daniel; Siddiqui, Khalid M.; Kim, Sungwon; Choi, Sungwook; Volckaert, Klara; Majchrzak, Paulina E.; Ulstrup, Søren; Agarwal, Naman; Hallman, Kent; Haglund, Richard F.; Günther, Christian M.; Pfau, Bastian; Eisebitt, Stefan; Backes, Dirk; Maccherozzi, Francesco; Fitzpatrick, Ann; Dhesi, Sarnjeet S.; Gargiani, Pierluigi; Valvidares, Manuel; Artrith, Nongnuch; de Groot, Frank; Choi, Hyeongi; Jang, Dogeun; Katoch, Abhishek; Kwon, Soonnam; Park, Sang Han; Kim, Hyunjung; Wall, Simon E.
    In the version of this article initially published, the Acknowledgements was missing thanks from Soonnam Kwon for support from the National Research Foundation of Korea (NRF-2020R1A2C1007416). The error has been corrected in the HTML and PDF versions of the article.
  • Item
    In situ correlation between metastable phase-transformation mechanism and kinetics in a metallic glass
    ([London] : Nature Publishing Group, 2021) Orava, Jiri; Balachandran, Shanoob; Han, Xiaoliang; Shuleshova, Olga; Nurouzi, Ebrahim; Soldatov, Ivan; Oswald, Steffen; Gutowski, Olof; Ivashko, Oleh; Dippel, Ann-Christin; v. Zimmermann, Martin; Ivanov, Yurii P.; Greer, A. Lindsay; Raabe, Dierk; Herbig, Michael; Kaban, Ivan
    A combination of complementary high-energy X-ray diffraction, containerless solidification during electromagnetic levitation and transmission electron microscopy is used to map in situ the phase evolution in a prototype Cu-Zr-Al glass during flash-annealing imposed at a rate ranging from 102 to 103 K s−1 and during cooling from the liquid state. Such a combination of experimental techniques provides hitherto inaccessible insight into the phase-transformation mechanism and its kinetics with high temporal resolution over the entire temperature range of the existence of the supercooled liquid. On flash-annealing, most of the formed phases represent transient (metastable) states – they crystallographically conform to their equilibrium phases but the compositions, revealed by atom probe tomography, are different. It is only the B2 CuZr phase which is represented by its equilibrium composition, and its growth is facilitated by a kinetic mechanism of Al partitioning; Al-rich precipitates of less than 10 nm in a diameter are revealed. In this work, the kinetic and chemical conditions of the high propensity of the glass for the B2 phase formation are formulated, and the multi-technique approach can be applied to map phase transformations in other metallic-glass-forming systems.
  • Item
    Strain derivative of thermoelectric properties as a sensitive probe for nematicity
    ([London] : Nature Publishing Group, 2021) Caglieris, F.; Wuttke, C.; Hong, C.; Sykora, S.; Kappenberger, R.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Hess, C.
    The nematic instability is an undebatable ingredient of the physics of iron-based superconductors. Yet, its origin remains enigmatic as it involves a fermiology with an intricate interplay of lattice-, orbital-, and spin degrees of freedom. It is well known that thermoelectric transport is an excellent probe for revealing even subtle signatures of instabilities and pertinent fluctuations. In this paper, we report a strong response of the thermoelectric transport properties of two underdoped 1111 iron-based superconductors to a vanishingly small strain. By introducing the strain derivative of the Seebeck and the Nernst coefficients, we provide a description of the nematic order parameter, proving the existence of an anisotropic Peltier-tensor beside an anisotropic conductivity tensor. Our measurements reveal that the transport nematic phenomenology is the result of the combined effect of both an anisotropic scattering time and Fermi surface distortions, pointing out that in a realistic description, abreast of the spin fluctuations also the orbital character is a fundamental ingredient. In addition, we show that nematic fluctuations universally relax in a Curie–Weiss fashion above TS in all the elasto-transport measurements and we provide evidences that nematicity must be band selective.