Search Results

Now showing 1 - 9 of 9
  • Item
    Resonant terahertz light absorption by virtue of tunable hybrid interface phonon-plasmon modes in semiconductor nanoshells
    (Basel : MDPI AG, 2019) Nika, D.L.; Pokatilov, E.P.; Fomin, V.M.; Devreese, J.T.; Tempere, J.
    Metallic nanoshells have proven to be particularly versatile, with applications in biomedical imaging and surface-enhanced Raman spectroscopy. Here, we theoretically demonstrate that hybrid phonon-plasmon modes in semiconductor nanoshells offer similar advantages in the terahertz regime. We show that, depending on tm,n,nhe doping of the semiconductor shells, terahertz light absorption in these nanostructures can be resonantly enhanced due to the strong coupling between interface plasmons and phonons. A threefold to fourfold increase in the absorption peak intensity was achieved at specific values of electron concentration. Doping, as well as adapting the nanoshell radius, allowed for fine-tuning of the absorption peak frequencies.
  • Item
    Femtosecond spectroscopy in a nearly optimally doped Fe-based superconductors FeSe0.5Te0.5 and Ba(Fe 1-xCox)2As2/Fe thin film
    (Bristol : Institute of Physics Publishing, 2014) Bonavolontà, C.; Parlato, L.; De, Lisio, C.; Valentino, M.; Pepe, G.P.; Kazumasa, I.; Kurth, F.; Bellingeri, E.; Pallecchi, I.; Putti, M.; Ferdeghini, C.; Ummarino, G.A.; Laviano, F.
    Femtosecond spectroscopy has been used to investigate the quasi-particle relaxation times in nearly optimally doped Fe-based superconductors FeSe 0.5Te0.5 and optimally doped Ba-122 thin films growth on a Fe buffer layer. Experimental results concerning the temperature dependence of the relaxation time of such pnictides both in the superconducting state are now presented and discussed. Modelling the T-dependence of relaxation times an estimation of both electron-phonon constant and superconducting energy gap in the excitation spectrum of both Fe(Se,Te) and Ba-122 compounds is obtained.
  • Item
    High-temperature electromechanical loss in piezoelectric langasite and catangasite crystals
    (Melville, NY : American Inst. of Physics, 2021) Suhak, Yuriy; Fritze, Holger; Sotnikov, Andrei; Schmidt, Hagen; Johnson, Ward L.
    Temperature-dependent acoustic loss Q−1 is studied in partially disordered langasite (LGS, La3Ga5SiO14) and ordered catangasite (CTGS, Ca3TaGa3Si2O14) crystals and compared with previously reported CTGS and langatate (LGT, La3Ga5.5Ta0.5O14) data. Two independent techniques, a contactless tone-burst excitation technique and contacting resonant piezoelectric spectroscopy, are used in this study. Contributions to the measured Q−1(T) are determined through fitting to physics-based functions, and the extracted fit parameters, including the activation energies of the processes, are discussed. It is shown that losses in LGS and CTGS are caused by a superposition of several mechanisms, including intrinsic phonon–phonon loss, point-defect relaxations, and conductivity-related relaxations.
  • Item
    Temperature-dependent Raman investigation of rolled up InGaAs/GaAs microtubes
    (New York, NY [u.a.] : Springer, 2012) Rodriguez, R.D.; Sheremet, E.; Thurmer, D.J.; Lehmann, D.; Gordan, O.D.; Seidel, F.; Milekhin, A.; Schmidt, O.G.; Hietschold, M.; Zahn, D.R.T.
    Large arrays of multifunctional rolled-up semiconductors can be mass-produced with precisely controlled size and composition, making them of great technological interest for micro- and nano-scale device fabrication. The microtube behavior at different temperatures is a key factor towards further engineering their functionality, as well as for characterizing strain, defects, and temperature-dependent properties of the structures. For this purpose, we probe optical phonons of GaAs/InGaAs rolled-up microtubes using Raman spectroscopy on defect-rich (faulty) and defect-free microtubes. The microtubes are fabricated by selectively etching an AlAs sacrificial layer in order to release the strained InGaAs/GaAs bilayer, all grown by molecular beam epitaxy. Pristine microtubes show homogeneity of the GaAs and InGaAs peak positions and intensities along the tube, which indicates a defect-free rolling up process, while for a cone-like microtube, a downward shift of the GaAs LO phonon peak along the cone is observed. Formation of other type of defects, including partially unfolded microtubes, can also be related to a high Raman intensity of the TO phonon in GaAs. We argue that the appearance of the TO phonon mode is a consequence of further relaxation of the selection rules due to the defects on the tubes, which makes this phonon useful for failure detection/prediction in such rolled up systems. In order to systematically characterize the temperature stability of the rolled up microtubes, Raman spectra were acquired as a function of sample temperature up to 300°C. The reversibility of the changes in the Raman spectra of the tubes within this temperature range is demonstrated.
  • Item
    Wavefunction of polariton condensates in a tunable acoustic lattice
    (Bristol : IOP, 2012) Cerda-Méndez, E.A.; Krizhanovskii, D.N.; Biermann, K.; Hey, R.; Skolnick, M.S.; Santos, P.V.
    We study the spatial coherence of polariton condensates subjected to coherent modulation by a one-dimensional tunable acoustic potential.We use an interferometric technique to measure the amplitude and phase of the macroscopic condensate wavefunction. By increasing the acoustic modulation amplitude, we track the transition from the extended wavefunction of the unperturbed condensate to a regime where the wavefunction is spatially modulated and then to a fully confined regime, where independent condensates form at the minima of the potential with negligible particle tunneling between adjacent sites.
  • Item
    Dynamically tuned non-classical light emission from atomic defects in hexagonal boron nitride
    (London : Springer Nature, 2019) Lazić, Snežana; Espinha, André; Yanguas, Sergio Pinilla; Gibaja, Carlos; Zamora, Félix; Ares, Pablo; Chhowalla, Manish; Paz, Wendel S.; Palacios Burgos, Juan José; Hernández-Mínguez, Alberto; Santos, Paulo V.; van der Meulen, Herko P.
    Luminescent defects in hexagonal boron nitride (h-BN) have recently emerged as a promising platform for non-classical light emission. On-chip solutions, however, require techniques for controllable in-situ manipulation of quantum light. Here, we demonstrate the dynamic spectral and temporal tuning of the optical emission from h-BN via moving acousto-mechanical modulation induced by stimulated phonons. When perturbed by the propagating acoustic phonon, the optically probed radiative h-BN defects are periodically strained and their sharp emission lines are modulated by the deformation potential coupling. This results in an acoustically driven spectral tuning within a 2.5-meV bandwidth. Our findings, supported by first-principles theoretical calculations, reveal exceptionally high elasto-optic coupling in h-BN of ~50 meV/%. Temporal control of the emitted photons is achieved by combining the acoustically mediated fine-spectral tuning with spectral detection filtering. This study opens the door to the use of sound for scalable integration of h-BN emitters in nanophotonic and quantum information technologies. © 2019, The Author(s).
  • Item
    Phononic-magnetic dichotomy of the thermal Hall effect in the Kitaev material Na2 Co2 TeO6
    (College Park, MD : APS, 2023) Gillig, Matthias; Hong, Xiaochen; Wellm, Christoph; Kataev, Vladislav; Yao, Weiliang; Li, Yuan; Büchner, Bernd; Hess, Christian
    The quest for a half-quantized thermal Hall effect of a Kitaev system represents an important tool to probe topological edge currents of emergent Majorana fermions. Pertinent experimental findings for α-RuCl3 are, however, strongly debated, and it has been argued that the thermal Hall signal stems from phonons or magnons rather than from Majorana fermions. Here, we investigate the thermal Hall effect of the Kitaev candidate material Na2Co2TeO6, and we show that the measured signal emerges from at least two components, phonons and magnetic excitations. This dichotomy results from our discovery that the longitudinal and transversal heat conductivities share clear phononic signatures, while the transversal signal changes sign upon entering the low-temperature, magnetically ordered phase. Our results demonstrate that uncovering a genuinely quantized magnetic thermal Hall effect in Kitaev topological quantum spin liquids such as α-RuCl3 and Na2Co2TeO6 requires disentangling phonon vs magnetic contributions, including potentially fractionalized excitations such as the expected Majorana fermions.
  • Item
    Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Charnukha, A.; Sternbach, A.; Stinson, H.T.; Schlereth, R.; Brüne, C.; Molenkamp, L.W.; Basov, D.N.
    The observation of ultrarelativistic fermions in condensed-matter systems has uncovered a cornucopia of novel phenomenology as well as a potential for effective ultrafast light engineering of new states of matter. While the nonequilibrium properties of two- and three-dimensional (2D and 3D) hexagonal crystals have been studied extensively, our understanding of the photoinduced dynamics in 3D single-valley ultrarelativistic materials is, unexpectedly, lacking. Here, we use ultrafast scanning near-field optical spectroscopy to access and control nonequilibrium large-momentum plasmon-polaritons in thin films of a prototypical narrow-bandgap semiconductor Hg0.81Cd0.19Te. We demonstrate that these collective excitations exhibit distinctly nonclassical scaling with electron density characteristic of the ultrarelativistic Kane regime and experience ultrafast initial relaxation followed by a long-lived highly coherent state. Our observation and ultrafast control of Kane plasmon-polaritons in a semiconducting material using light sources in the standard telecommunications fiber-optics window open a new avenue toward high-bandwidth coherent information processing in next-generation plasmonic circuits.
  • Item
    Coupling of lattice, spin, and intraconfigurational excitations of Eu3+ in Eu2ZnIrO6
    (Washington, DC : American Association for the Advancement of Science, 2020) Singh, Birender; Vogl, M.; Wurmehl, S.; Aswartham, S.; Büchner, B.; Kumar, Pradeep
    In Eu2ZnIrO6, effectively two atoms are active; i.e., Ir is magnetically active, which results in complex magnetic ordering within the Ir sublattice at low temperature. On the other hand, although Eu is a Van Vleck paramagnet, it is active in the electronic channels involving 4f6 crystal-field split levels. Phonons, quanta of lattice vibration involving vibration of atoms in the unit cell, are intimately coupled with both magnetic and electronic degrees of freedom (DOF). Here, we report a comprehensive study focusing on the phonons as well as intraconfigurational excitations in double-perovskite Eu2ZnIrO6. Our studies reveal strong coupling of phonons with the underlying magnetic DOF reflected in the renormalization of the phonon self-energy parameters well above the spin-solid phase (TN∼12K) until temperature as high as ∼3TN evidences broken spin rotational symmetry deep into the paramagnetic phase. In particular, all the observed first-order phonon modes show softening of varying degree below ∼3TN, and low-frequency phonons become sharper, while the high-frequency phonons show broadening attributed to the additional available magnetic damping channels. We also observed a large number of high-energy modes, 39 in total, attributed to the electronic transitions between 4f levels of the rare-earth Eu3+ ion and these modes shows anomalous temperature evolution as well as mixing of the crystal-field split levels attributed to the strong coupling of electronic and lattice DOF.