Search Results

Now showing 1 - 10 of 18
  • Item
    Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM
    (New York : American Institute of Physics, 2016) Yeh, Chia-Pin; Lisker, Marco; Kalkofen, Bodo; Burte, Edmund P.
    Ferroelectric capacitors made by lead zirconate titanate (PZT) thin films and iridium electrodes are fabricated on three-dimensional structures and their properties are investigated. The iridium films are grown by Plasma Enhanced MOCVD at 300°C, while the PZT films are deposited by thermal MOCVD at different process temperatures between 450°C and 550°C. The step coverage and composition uniformity of the PZT films on trench holes and lines are investigated. Phase separation of PZT films has been observed on both 3D and planar structures. No clear dependences of the crystallization and composition of PZT on 3D structure topography have been found. STEM EDX line scans show a uniform Zr/(Zr+Ti) concentration ratio along the 3D profile but the variation of the Pb/(Zr+Ti) concentration ratio is large because of the phase separation. 3D ferroelectric capacitors show good ferroelectric properties but have much higher leakage currents than 2D ferroelectric capacitors. Nevertheless, during cycling tests the degradation of the remnant polarization between 2D and 3D capacitors is similar after 109 switching cycles. In addition, the sidewalls and bottoms of the 3D structures seem to have comparable remnant polarizations with the horizontal top surfaces.
  • Item
    Polarization manipulation of surface acoustic waves by metallization patterns on a piezoelectric substrate
    (Melville, NY : AIP Publishing, 2020) Weser, R.; Darinskii, A.N.; Schmidt, H.
    Surface acoustic waves (SAWs) with large normal (vertical) surface displacement at the surface are commonly utilized in microfluidic actuators in order to provide the desired momentum transfer to the fluid. We present an alternative concept using a SAW with comparatively small vertical displacement. Such a SAW passes underneath the microfluidic vessel walls with minimum losses but it needs to be converted inside the vessel into surface vibrations with large vertical displacements. The principal operability of the above idea is illustrated by experimental and numerical studies of the polarization conversion of a leaky SAW on 64° rotated Y-cut of lithium niobate owing to the partial metallization of the substrate surface. In particular, it is found that vertical displacements on the metallized surface can be up to 3.5 times higher as compared to their values on the free surface. Results of computations agree reasonably well with measurements carried out with a laser Doppler vibrometer and allow the clarification of some specific features of this polarization conversion by means of spatial frequency analysis. © 2020 Author(s).
  • Item
    Generation of Multiple Vector Optical Bottle Beams
    (Basel : MDPI, 2021) Khonina, Svetlana N.; Porfirev, Alexey P.; Volotovskiy, Sergey G.; Ustinov, Andrey V.; Fomchenkov, Sergey A.; Pavelyev, Vladimir S.; Schröter, Siegmund; Duparré, Michael
    We propose binary diffractive optical elements, combining several axicons of different types (axis-symmetrical and spiral), for the generation of a 3D intensity distribution in the form of multiple vector optical ‘bottle’ beams, which can be tailored by a change in the polarization state of the illumination radiation. The spatial dynamics of the obtained intensity distribution with different polarization states (circular and cylindrical of various orders) were investigated in paraxial mode numerically and experimentally. The designed binary axicons were manufactured using the e-beam lithography technique. The proposed combinations of optical elements can be used for the generation of vector optical traps in the field of laser trapping and manipulation, as well as for performing the spatial transformation of the polarization state of laser radiation, which is crucial in the field of laser-matter interaction for the generation of special morphologies of laser-induced periodic surface structures.
  • Item
    Robust nuclear hyperpolarization driven by strongly coupled nitrogen vacancy centers
    (Melville, NY : American Inst. of Physics, 2021) Wunderlich, Ralf; Staacke, Robert; Knolle, Wolfgang; Abel, Bernd; Haase, Jürgen; Meijer, Jan
    Nuclear magnetic resonance techniques are widely used in the natural sciences but they lack sensitivity. Therefore, large sample volumes or long measurement times are necessary. In this work, we investigate the polarization of bulk 13C nuclei in a diamond above the thermal equilibrium at room temperature. Previously studied mechanisms utilize direct coupling to nitrogen vacancy centers or the additional assistance of substitutional nitrogen impurities for this purpose. We exploit strongly coupled nitrogen vacancy centers as polarization sources. We study two approaches to transfer the optically induced polarization of the electron spins of the nitrogen vacancy centers to nearby nuclear spins. First, the electron-nuclear polarization transfer is achieved by energy matching conditions or, second, by magnetic field sweeps inducing Landau–Zener-like transitions. Simulations according to a quantum mechanical system consisting of two coupled nitrogen vacancy centers and a weakly coupled 13C spin show an excellent agreement with the experimental data. Both approaches allow a reduction of the measurement time by roughly three orders of magnitude.
  • Item
    Polarized recombination of acoustically transported carriers in GaAs nanowires
    (London : BioMed Central, 2012) Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima Jr, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.
    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.
  • Item
    Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots
    (New York, NY [u.a.] : Springer, 2012) Plumhof, J.D.; Trotta, R.; Rastelli, A.; Schmidt, O.G.
    Deterministic sources of polarization entangled photon pairs on demand are considered as important building blocks for quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a sufficiently small excitonic fine structure splitting (FSS) can be used as triggered, on-chip sources of polarization entangled photon pairs. As-grown QDs usually do not have the required values of the FSS, making the availability of post-growth tuning techniques highly desired. This article reviews the effect of different post-growth treatments and external fields on the FSS such as thermal annealing, magnetic fields, the optical Stark effect, electric fields, and anisotropic stress. As a consequence of the tuning of the FSS, for some tuning techniques a rotation of the polarization of the emitted light is observed. The joint modification of polarization orientation and FSS can be described by an anticrossing of the bright excitonic states.
  • Item
    Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology
    (Bristol : IOP Publ., 2020) Georgieva, Galina; Voigt, Karsten; Mai, Christian; Seiler, Pascal M.; Petermann, Klaus; Zimmermann, Lars
    We investigate numerically and experimentally sheared 2D grating couplers in a photonic BiCMOS technology with a focus on their splitting behavior. Two realization forms of a waveguide-To-grating shear angle are considered. The cross-polarization used as a figure-of-merit is shown to be strongly dependent on the grating perturbation strength and is a crucial limitation not only for the grating splitting performance, but also for its coupling efficiency. © 2020 The Japan Society of Applied Physics.
  • Item
    Multiscale thermodynamics of charged mixtures
    (Berlin ; Heidelberg : Springer, 2021) Vágner, Petr; Pavelka, Michal; Esen, Oğul
    A multiscale theory of interacting continuum mechanics and thermodynamics of mixtures of fluids, electrodynamics, polarization, and magnetization is proposed. The mechanical (reversible) part of the theory is constructed in a purely geometric way by means of semidirect products. This leads to a complex Hamiltonian system with a new Poisson bracket, which can be used in principle with any energy functional. The thermodynamic (irreversible) part is added as gradient dynamics, generated by derivatives of a dissipation potential, which makes the theory part of the GENERIC framework. Subsequently, Dynamic MaxEnt reductions are carried out, which lead to reduced GENERIC models for smaller sets of state variables. Eventually, standard engineering models are recovered as the low-level limits of the detailed theory. The theory is then compared to recent literature. © 2020, The Author(s).
  • Item
    High-field phase diagram of the heavy-fermion metal YbRh2Si2
    (Milton Park : Taylor & Francis, 2006) Gegenwart, P.; Tokiwa, Y.; Westerkamp, T.; Weickert, F.; Custers, J.; Ferstl, J.; Krellner, C.; Geibel, C.; Kerschl, P.; Müller, K.-H.; Steglich, F.
    The tetragonal heavy-fermion (HF) metal YbRh2Si2 (Kondo temperature TK≈ 25 K) exhibits a magnetic field-induced quantum critical point related to the suppression of very weak antiferromagnetic (AF) ordering (TN = 70 mK) at a critical field of Bc = 0.06 T (B⊥ c). To understand the influence of magnetic fields on quantum criticality and the Kondo effect, we study the evolution of various thermodynamic and magnetic properties upon tuning the system by magnetic field. At B > Bc, the AF component of the quantum critical fluctuations becomes suppressed, and FM fluctuations dominate. Their polarization with magnetic field gives rise to a large increase of the magnetization. At B* = 10 T, the Zeeman energy becomes comparable to kB TK, and a steplike decrease of the quasi-particle mass deduced from the specific-heat coefficient indicates the suppression of HF behaviour. The magnetization M(B) shows a pronounced decrease in slope at B* without any signature of metamagnetism. The field dependence of the linear magnetostriction coefficient suggests an increase of the Yb-valency with field, reaching 3+ at high fields. A negative hydrostatic pressure dependence of B* is found, similar to that of the Kondo temperature. We also compare the magnetization behaviour in pulsed fields up to 50 T with that of the isoelectronic HF system YbIr2Si2, which, due to a larger unit-cell volume, has an enhanced TK of about 40 K.
  • Item
    Valley control by linearly polarized laser pulses: example of WSe2
    (Washington, DC : OSA, 2022) Sharma, S.; Elliott, P.; Shallcross, S.
    Electrons at the band edges of materials are endowed with a valley index, a quantum number locating the band edge within the Brillouin zone. An important question is then how this index may be controlled by laser pulses, with current understanding that it couples exclusively via circularly polarized light. Employing both tight-binding and state-of-the-art time dependent density function theory, we show that on femtosecond time scales valley coupling is a much more general effect. We find that two time separated linearly polarized pulses allow almost complete control over valley excitation, with the pulse time difference and polarization vectors emerging as key parameters for valley control. Our findings highlight the possibility of controlling coherent electronic excitation by successive femtosecond laser pulses, and offer a route towards valleytronics in two-dimensional materials.