Search Results

Now showing 1 - 2 of 2
  • Item
    A comprehensive study of charge transport in Au-contacted graphene on Ge/Si(001)
    (Melville, NY : American Inst. of Physics, 2020) Sinterhauf, Anna; Bode, Simeon; Auge, Manuel; Lukosius, Mindaugas; Lippert, Gunther; Hofsäss, Hans-Christian; Wenderoth, Martin
    We investigate the electronic transport properties of Au-contacted graphene on Ge/Si(001). Kelvin probe force microscopy at room temperature with an additionally applied electric transport field is used to gain a comprehensive understanding of macroscopic transport measurements. In particular, we analyze the contact pads including the transition region, perform local transport measurements in pristine graphene/Germanium, and explore the role of the semiconducting Germanium substrate. We connect the results from these local scale measurements with the macroscopic performance of the device. We find that a graphene sheet on a 2 μm Ge film carries approximately 10% of the current flowing through the device. Moreover, we show that an electronic transition region forms directly adjacent to the contact pads. This transition region is characterized by a width of >100 μm and a strongly increased sheet resistance acting as the bottleneck for charge transport. Based on Rutherford backscattering of the contact pads, we suggest that the formation of this transition region is caused by diffusion. © 2020 Author(s).
  • Item
    Non-isothermal phase-field simulations of laser-written in-plane SiGe heterostructures for photonic applications
    (London : Springer Nature, 2021) Aktas, Ozan; Yamamoto, Yuji; Kaynak, Mehmet; Peacock, Anna C.
    Advanced solid-state devices, including lasers and modulators, require semiconductor heterostructures for nanoscale engineering of the electronic bandgap and refractive index. However, existing epitaxial growth methods are limited to fabrication of vertical heterostructures grown layer by layer. Here, we report the use of finite-element-method-based phase-field modelling with thermocapillary convection to investigate laser inscription of in-plane heterostructures within silicon-germanium films. The modelling is supported by experimental work using epitaxially-grown Si0.5Ge0.5 layers. The phase-field simulations reveal that various in-plane heterostructures with single or periodic interfaces can be fabricated by controlling phase segregation through modulation of the scan speed, power, and beam position. Optical simulations are used to demonstrate the potential for two devices: graded-index waveguides with Ge-rich (>70%) cores, and waveguide Bragg gratings with nanoscale periods (100–500 nm). Periodic heterostructure formation via sub-millisecond modulation of the laser parameters opens a route for post-growth fabrication of in-plane quantum wells and superlattices in semiconductor alloy films.