Search Results

Now showing 1 - 2 of 2
  • Item
    Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing
    (London : Royal Soc. of Chemistry, 2021) Thoraval, Marie-Jean; Schubert, Jonas; Karpitschka, Stefan; Chanana, Munish; Boyer, François; Sandoval-Naval, Enrique; Dijksman, J. Frits; Snoeijer, Jacco H.; Lohse, Detlef
    The splashing of liquid drops onto a solid surface is important for a wide range of applications, including combustion and spray coating. As the drop hits the solid surface, the liquid is ejected into a thin horizontal sheet expanding radially over the substrate. Above a critical impact velocity, the liquid sheet is forced to separate from the solid surface by the ambient air, and breaks up into smaller droplets. Despite many applications involving complex fluids, their effects on splashing remain mostly unexplored. Here we show that the splashing of a nanoparticle dispersion can be suppressed at higher impact velocities by the interactions of the nanoparticles with the solid surface. Although the dispersion drop first shows the classical transition from deposition to splashing when increasing the impact velocity, no splashing is observed above a second higher critical impact velocity. This result goes against the commonly accepted understanding of splashing, that a higher impact velocity should lead to even more pronounced splashing. Our findings open new possibilities to deposit large amount of complex liquids at high speeds.
  • Item
    Light-induced manipulation of passive and active microparticles
    (Berlin ; Heidelberg : Springer, 2021) Arya, Pooja; Umlandt, Maren; Jelken, Joachim; Feldmann, David; Lomadze, Nino; Asmolov, Evgeny S.; Vinogradova, Olga I.; Santer, Svetlana
    We consider sedimented at a solid wall particles that are immersed in water containing small additives of photosensitive ionic surfactants. It is shown that illumination with an appropriate wavelength, a beam intensity profile, shape and size could lead to a variety of dynamic, both unsteady and steady state, configurations of particles. These dynamic, well-controlled and switchable particle patterns at the wall are due to an emerging diffusio-osmotic flow that takes its origin in the adjacent to the wall electrostatic diffuse layer, where the concentration gradients of surfactant are induced by light. The conventional nonporous particles are passive and can move only with already generated flow. However, porous colloids actively participate themselves in the flow generation mechanism at the wall, which also sets their interactions that can be very long ranged. This light-induced diffusio-osmosis opens novel avenues to manipulate colloidal particles and assemble them to various patterns. We show in particular how to create and split optically the confined regions of particles of tunable size and shape, where well-controlled flow-induced forces on the colloids could result in their crystalline packing, formation of dilute lattices of well-separated particles, and other states.