Search Results

Now showing 1 - 2 of 2
  • Item
    Percolation of rigid fractal carbon black aggregates
    (Melville, NY : American Institute of Physics, 2021) Coupette, Fabian; Zhang, Long; Kuttich, Björn; Chumakov, Andrei; Roth, Stephan V.; González-García, Lola; Kraus, Tobias; Schilling, Tanja
    We examine network formation and percolation of carbon black by means of Monte Carlo simulations and experiments. In the simulation, we model carbon black by rigid aggregates of impenetrable spheres, which we obtain by diffusion-limited aggregation. To determine the input parameters for the simulation, we experimentally characterize the micro-structure and size distribution of carbon black aggregates. We then simulate suspensions of aggregates and determine the percolation threshold as a function of the aggregate size distribution. We observe a quasi-universal relation between the percolation threshold and a weighted average radius of gyration of the aggregate ensemble. Higher order moments of the size distribution do not have an effect on the percolation threshold. We conclude further that the concentration of large carbon black aggregates has a stronger influence on the percolation threshold than the concentration of small aggregates. In the experiment, we disperse the carbon black in a polymer matrix and measure the conductivity of the composite. We successfully test the hypotheses drawn from simulation by comparing composites prepared with the same type of carbon black before and after ball milling, i.e., on changing only the distribution of aggregate sizes in the composites.
  • Item
    Switching between Proton Vacancy and Excess Proton Transfer Pathways in the Reaction between 7-Hydroxyquinoline and Formate
    (Washington, DC : Soc., 2021) Codescu, Marius-Andrei; Weiß, Moritz; Brehm, Martin; Kornilov, Oleg; Sebastiani, Daniel; Nibbering, Erik T. J.
    Bifunctional or amphoteric photoacids simultaneously present donor (acidic) and acceptor (basic) properties making them useful tools to analyze proton transfer reactions. In protic solvents, the proton exchange between the acid and the base is controlled by the acidity or basicity strength and typically occurs on two different pathways known as protolysis and hydrolysis. We report here how the addition of a formate base will alter the relative importance of the possible reaction pathways of the bifunctional photoacid 7-hydroxyquinoline (7HQ), which has been recently understood to predominantly involve a hydroxide/methoxide transport mechanism between the basic proton-accepting quinoline nitrogen site toward the proton-donating OH group with a time constant of 360 ps in deuterated methanol (CD3OD). We follow the reaction dynamics by probing the IR-active marker modes of the different charged forms of photoexcited 7HQ, and of formic acid (HCOOD) in CD3OD solution. A comparison of the transient IR spectra as a function of formate concentration, and classical molecular dynamics simulations enables us to identify distinct contributions of “tight” (meaning “contact”) and “loose” (i.e., “solvent-separated”) 7HQ–formate reaction pairs in our data. Our results suggest that depending on the orientation of the OH group with respect to the quinoline aromatic ring system, the presence of the formate molecule in a proton relay pathway facilitates a net proton transfer from the proton-donating OH group of 7HQ-N* via the methanol/formate bridge toward the quinoline N site.