Search Results

Now showing 1 - 2 of 2
  • Item
    The 2018 correlative microscopy techniques roadmap
    (Bristol : IOP Publishing, 2018) Ando, Toshio; Bhamidimarri, Satya Prathyusha; Brending, Niklas; Colin-York, H; Collinson, Lucy; De Jonge, Niels; de Pablo, P J; Debroye, Elke; Eggeling, Christian; Franck, Christian; Fritzsche, Marco; Gerritsen, Hans; Giepmans, Ben N G; Grunewald, Kay; Hofkens, Johan; Hoogenboom, Jacob P; Janssen, Kris P F; Kaufmann, Rainer; Klumpermann, Judith; Kurniawan, Nyoman; Kusch, Jana; Liv, Nalan; Parekh, Viha; Peckys, Diana B; Rehfeldt, Florian; Reutens, David C; Roeffaers, Maarten B J; Salditt, Tim; Schaap, Iwan A T; Schwarz, Ulrich S; Verkade, Paul; Vogel, Michael W; Wagner, Richard; Winterhalter, Mathias; Yuan, Haifeng; Zifarelli, Giovanni
    Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell–cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure–function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
  • Item
    HelixJet: An innovative plasma source for next-generation additive manufacturing (3D printing)
    (Hoboken, NJ : Wiley Interscience, 2020) Schäfer, Jan; Quade, Antje; Abrams, Kerry J.; Sigeneger, Florian; Becker, Markus M.; Majewski, Candice; Rodenburg, Cornelia
    A novel plasma source (HelixJet) for use in additive manufacturing (AM)/3D printing is proposed. The HelixJet is a capacitively coupled radio frequency plasma with a double-helix electrode configuration that generates a surprisingly stable and homogeneous glow plasma at low flow rates of argon and its mixtures at atmospheric pressure. The HelixJet was tested on three polyamide powders usually used to produce parts by laser sintering, a powder-based AM process, to form local deposits. The chemical composition of such plasma-printed samples is compared with thermally produced and laser-sintered samples with respect to differences in morphology that result from the different thermal cycles on several length scales. Plasma prints exhibit unique features attributable to the nonequilibrium chemistry and to the high-speed heat exchange.