Search Results

Now showing 1 - 3 of 3
  • Item
    A diuranium carbide cluster stabilized inside a C80 fullerene cage
    (London : Nature Publishing Group, 2018) Zhang, X.; Li, W.; Feng, L.; Chen, X.; Hansen, A.; Grimme, S.; Fortier, S.; Sergentu, D.-C.; Duignan, T.J.; Autschbach, J.; Wang, S.; Wang, Y.; Velkos, G.; Popov, A.A.; Aghdassi, N.; Duhm, S.; Li, X.; Li, J.; Echegoyen, L.; Schwarz, W.H.E.; Chen, N.
    Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing I h(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@I h(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@I h(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@I h(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
  • Item
    Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency
    (London : Nature Publishing Group, 2018) Zhu, H.; He, R.; Mao, J.; Zhu, Q.; Li, C.; Sun, J.; Ren, W.; Wang, Y.; Liu, Z.; Tang, Z.; Sotnikov, A.; Wang, Z.; Broido, D.; Singh, D.J.; Chen, G.; Nielsch, K.; Ren, Z.
    Thermoelectric materials are capable of converting waste heat into electricity. The dimensionless figure-of-merit (ZT), as the critical measure for the material's thermoelectric performance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as one of the most promising candidates for thermoelectric power generation, have relatively low ZTs compared to other material systems. Here we report the discovery of p-type ZrCoBi-based half-Heuslers with a record-high ZT of ∼1.42 at 973 K and a high thermoelectric conversion efficiency of ∼9% at the temperature difference of ∼500 K. Such an outstanding thermoelectric performance originates from its unique band structure offering a high band degeneracy (N v) of 10 in conjunction with a low thermal conductivity benefiting from the low mean sound velocity (v m ∼2800 m s-1). Our work demonstrates that ZrCoBi-based half-Heuslers are promising candidates for high-temperature thermoelectric power generation.
  • Item
    Growth of GaN nanowire ensembles in molecular beam epitaxy: Overcoming the limitations of their spontaneous formation
    (Berlin : Humboldt-Universität zu Berlin, 2018) Zettler, Johannes Kristian
    Dichte Ensembles aus GaN-Nanodrähten können in der Molekularstrahlepitaxie mithilfe eines selbstinduzierten Prozesses sowohl auf kristallinen als auch amorphen Substraten gezüchtet werden. Aufgrund der Natur selbstgesteuerter Prozesse ist dabei die Kontrolle über viele wichtige Ensembleparameter jedoch eingeschränkt. Die Arbeit adressiert genau diese Einschränkungen bei der Kristallzucht selbstinduzierter GaN-Nanodrähte. Konkret sind das Limitierungen bezüglich der Nanodraht-Durchmesser, die Nanodraht-Anzahl-/Flächendichte, der Koaleszenzgrad sowie die maximal realisierbare Wachstumstemperatur. Für jede dieser Einschränkungen werden Lösungen präsentiert, um die jeweilige Limitierung zu umgehen oder zu verschieben. Als Resultat wurde eine neue Klasse von GaN Nanodrähten mit bisher unerreichten strukturellen und optischen Eigenschaften geschaffen. Mithilfe eines Zwei-Schritt-Ansatzes, bei dem die Wachstumstemperatur während der Nukleationsphase erhöht wurde, konnte eine verbesserte Kontrolle über die Flächendichte, den Durchmesser und den Koaleszenzgrad der GaN-Nanodraht-Ensembles erreicht werden. Darüber hinaus werden Ansätze präsentiert, um die außerordentlich lange Inkubationszeit bei hohen Wachstumstemperaturen zu minimieren und damit wesentlich höhere Wachstumstemperaturen zu ermöglichen (bis zu 905°C). Die resulierenden GaN-Nanodraht-Ensembles weisen schmale exzitonische Übergänge mit sub-meV Linienbreiten auf, vergleichbar zu denen freistehender GaN-Schichten. Abschließend wurden Nanodrähte mit Durchmessern deutlich unterhalb von 10 nm fabriziert. Mithilfe eines Zersetzungsschrittes im Ultrahochvakuum direkt im Anschluss an die Wachstumsphase wurden reguläre Nanodraht-Ensembles verdünnt. Die resultierenden ultradünnen Nanodrähte weisen dielektrisches Confinement auf. Wir zeigen eine ausgeprägte exzitonische Emission von puren GaN-Nanodrähten mit Durchmessern bis hinab zu 6 nm.