Search Results

Now showing 1 - 4 of 4
  • Item
    Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy
    (London [u.a.] : Taylor & Francis, 2019) Niu, Gang; Calka, Pauline; Huang, Peng; Sharath, Sankaramangalam Ulhas; Petzold, Stefan; Gloskovskii, Andrei; Fröhlich, Karol; Zhao, Yudi; Kan, Jinfeng; Schubert, Markus Andreas; Bärwolf, Florian; Ren, Wei; Ye, Zuo-Guang; Perez, Eduardo; Wenger, Christian; Alff, Lambert; Schroeder, Thomas
    The HfO2-based resistive random access memory (RRAM) is one of the most promising candidates for non-volatile memory applications. The detection and examination of the dynamic behavior of oxygen ions/vacancies are crucial to deeply understand the microscopic physical nature of the resistive switching (RS) behavior. By using synchrotron radiation based, non-destructive and bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES), we demonstrate an operando diagnostic detection of the oxygen ‘breathing’ behavior at the oxide/metal interface, namely, oxygen migration between HfO2 and TiN during different RS periods. The results highlight the significance of oxide/metal interfaces in RRAM, even in filament-type devices. IMPACT STATEMENT: The oxygen ‘breathing’ behavior at the oxide/metal interface of filament-type resistive random access memory devices is operandoly detected using hard X-ray photoelectron spectroscopy as a diagnostic tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Modeling Photodetection at the Graphene/Ag2S Interface
    (Weinheim : Wiley-VCH, 2021) Spirito, Davide; Martín-García, Beatriz; Mišeikis, Vaidotas; Coletti, Camilla; Bonaccorso, Francesco; Krahne, Roman
    Mixed-dimensional systems host interesting phenomena that involve electron and ion transport along or across the interface, with promising applications in optoelectronic and electrochemical devices. Herein, a heterosystem consisting of a graphene monolayer with a colloidal Ag2S nanocrystal film atop, in which both ions and electrons are involved in photoelectrical effects, is studied. An investigation of the transport at the interface in different configurations by using a phototransistor configuration with graphene as a charge-transport layer and semiconductor nanocrystals as a light-sensitive layer is performed. The key feature of charge transfer is investigated as a function of gate voltage, frequency, and incident light power. A simple analytical model of the photoresponse is developed, to gain information on the device operation, revealing that the nanocrystals transfer electrons to graphene in the dark, but the opposite process occurs upon illumination. A frequency-dependence analysis suggests a fractal interface between the two materials. This interface can be modified using solid-state electrochemical reactions, leading to the formation of metallic Ag particles, which affect the graphene properties by additional doping, while keeping the photoresponse. Overall, these results provide analytical tools and guidelines for the evaluation of coupled electron/ion transport in hybrid systems.
  • Item
    Charge transfer characteristics of F6TCNNQ–gold interface
    (Chichester [u.a.] : Wiley, 2020) Kuhrt, Robert; Hantusch, Martin; Knupfer, Martin; Büchner, Bernd
    The metal–organic interface between polycrystalline gold and hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ) was investigated by photoelectron spectroscopy with the focus on the charge transfer characteristics from the metal to the molecule. The valence levels, as well as the core levels of the heterojunction, indicate a full electron transfer and a change in the chemical environment. The changes are observed in the first F6TCNNQ layers, whereas for further film growth, only neutral F6TCNNQ molecules could be detected. New occupied states below the Fermi level were observed in the valence levels, indicating a lowest unoccupied molecular orbital (LUMO) occupation due to the charge transfer. A fitting of the spectra reveals the presence of a neutral and a charged F6TCNNQ molecules, but no further species were present.
  • Item
    Advanced transmission electron microscopy investigation of nano-clustering in Gd-doped GaN
    (Berlin : Humboldt-Universität zu Berlin, 2014) Wu, Mingjian
    The central goal of this dissertation is (1) to clarify the distribution of Gd atoms in GaN:Gd with Gd concentration in the range between 10^16–10^19 cm^-3 by means of advanced (scanning) transmission electron microscopy [(S)TEM]; and based on that, (2) to understand the mechanisms that control such distribution. We discuss in detail the application and limitations of (S)TEM imaging and analysis techniques and modeling methods dedicated to the study of embedded nano-clusters. Besides, two case studies of semiconductor material systems that contain apparently observable nano-clusters are considered. One is about intentionally grown InAs nano-clusters embedded in Si and the other study the formation and phase transformation of Bi-containing clusters in annealed GaAsBi epilayers. Finally, we are able to identify the occurrence of GdN clusters in GaN:Gd samples and to determine their atomic structure. Strain contrast imaging in conjunction with contrast simulation unambiguously identifies the occurrence of small, platelet-shaped GdN clusters. These clusters are nearly uniform in size with their broader face parallel to the GaN (0001) basal plane. The result is confirmed by dark-field STEM Z-contrast imaging. The strong local lattice distortion (displacement field) induced by the clusters is recorded by HRTEM images and quantitatively analyzed. By comparing the displacement fields which are analyzed experimentally with these fields that are derived from energetically favored models, we conclude that the clusters are bilayer GdN with platelet diameter of only few Gd atoms; their internal structure is close to rocksalt GdN. This atomic structure model enables our discussion about the energetics of the clusters. The results indicate that the driving force for the formation of observed platelet in specific size is a compromise between the gain in cohesive energy and the penalty from interfacial strain energy due to lattice mismatch between the GdN cluster and GaN host.