Search Results

Now showing 1 - 2 of 2
  • Item
    Two types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTe
    (Washington : National Academy of Sciences, 2019) Rößler, S.; Koz, C.; Wang, Z.; Skourski, Y.; Doerr, M.; Kasinathan, D.; Rosner, H.; Schmidt, M.; Schwarz, U.; Rößler, U.K.; Wirth, S.
    A detailed experimental investigation of Fe1+yTe (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field–induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.
  • Item
    Memory effect assisted imaging through multimode optical fibres
    ([London] : Nature Publishing Group UK, 2021) Li, Shuhui; Horsley, Simon A.R.; Tyc, Tomáš; Čižmár, Tomáš; Phillips, David B.
    When light propagates through opaque material, the spatial information it holds becomes scrambled, but not necessarily lost. Two classes of techniques have emerged to recover this information: methods relying on optical memory effects, and transmission matrix (TM) approaches. Here we develop a general framework describing the nature of memory effects in structures of arbitrary geometry. We show how this framework, when combined with wavefront shaping driven by feedback from a guide-star, enables estimation of the TM of any such system. This highlights that guide-star assisted imaging is possible regardless of the type of memory effect a scatterer exhibits. We apply this concept to multimode fibres (MMFs) and identify a ‘quasi-radial’ memory effect. This allows the TM of an MMF to be approximated from only one end - an important step for micro-endoscopy. Our work broadens the applications of memory effects to a range of novel imaging and optical communication scenarios.