Search Results

Now showing 1 - 2 of 2
  • Item
    Study of the tidal variations in mesospheric temperature at low and mid latitudes from WINDII and potassium lidar observations
    (Göttingen : Copernicus GmbH, 2004) Shepherd, M.; Fricke-Begemann, C.
    Zonal mean daytime temperatures from the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) and nightly temperatures from a potassium (K) lidar are employed in the study of the tidal variations in mesospheric temperature at low and mid latitudes in the Northern Hemisphere. The analysis is applied to observations at 89 km height for winter solstice, December to February (DJF), at 55° N, and for May and November at 28° N. The WINDII results are based on observations from 1991 to 1997. The K-lidar observations for DJF at Kühlungsborn (54° N) were from 1996-1999, while those for May and November at Tenerife 28° N were from 1999. To avoid possible effects from year-to-year variability in the temperatures observed, as well as differences due to instrument calibration and observation periods, the mean temperature field is removed from the respective data sets, assuming that only tidal and planetary scale perturbations remain in the temperature residuals. The latter are then binned in 0.5 h periods and the individual data sets are fitted in a least-mean square sense to 12-h and 8-h harmonics, to infer semidiurnal and terdiurnal tidal parameters. Both the K-lidar and WINDII independently observed a strong semidiurnal tide in November, with amplitudes of 13 K and 7.4 K, respectively. Good agreement was also found in the tidal parameters derived from the two data sets for DJF and May. It was recognized that insufficient local time coverage of the two separate data sets could lead to an overestimation of the semidiurnal tidal amplitude. A combined ground-based/satellite data set with full diurnal local time coverage was created which was fitted to 24 h+ 12 h+8 h harmonics and a novel method applied to account for possible differences between the daytime and nighttime means. The results still yielded a strong semidiurnal tide in November at 28° N with an amplitude of 8.8 K which is twice the SD amplitude in May and DJF. The diurnal tidal parameters were practically the same at 28° N and 55° N, in November and DJF, respectively, with an amplitude of 6.5 K and peaking at ∼9h. The diurnal and semidiurnal amplitudes in May were about the same, 4 K, and 4.6 K, while the terdiurnal tide had the same amplitudes and phases in May and November at 28° N. Good agreement is found with other experimental data while models tend to underestimate the amplitudes.
  • Item
    The different stratospheric influence on cold-extremes in Eurasia and North America
    (London : Springer Nature, 2018) Kretschmer, Marlene; Cohen, Judah; Matthias, Vivien; Runge, Jakob; Coumou, Dim
    The stratospheric polar vortex can influence the tropospheric circulation and thereby winter weather in the mid-latitudes. Weak vortex states, often associated with sudden stratospheric warmings (SSW), have been shown to increase the risk of cold-spells especially over Eurasia, but its role for North American winters is less clear. Using cluster analysis, we show that there are two dominant patterns of increased polar cap heights in the lower stratosphere. Both patterns represent a weak polar vortex but they are associated with different wave mechanisms and different regional tropospheric impacts. The first pattern is zonally symmetric and associated with absorbed upward-propagating wave activity, leading to a negative phase of the North Atlantic Oscillation (NAO) and cold-air outbreaks over northern Eurasia. This coupling mechanism is well-documented in the literature and is consistent with the downward migration of the northern annular mode (NAM). The second pattern is zonally asymmetric and linked to downward reflected planetary waves over Canada followed by a negative phase of the Western Pacific Oscillation (WPO) and cold-spells in Central Canada and the Great Lakes region. Causal effect network (CEN) analyses confirm the atmospheric pathways associated with this asymmetric pattern. Moreover, our findings suggest the reflective mechanism to be sensitive to the exact region of upward wave-activity fluxes and to be state-dependent on the strength of the vortex. Identifying the causal pathways that operate on weekly to monthly timescales can pave the way for improved sub-seasonal to seasonal forecasting of cold spells in the mid-latitudes.