Search Results

Now showing 1 - 2 of 2
  • Item
    Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes
    (London : Nature Publishing Group, 2019) Li, Y.; Kovačič, M.; Westphalen, J.; Oswald, S.; Ma, Z.; Hänisch, C.; Will, P.-A.; Jiang, L.; Junghaehnel, M.; Scholz, R.; Lenk, S.; Reineke, S.
    Organic light-emitting diodes (OLEDs) suffer from notorious light trapping, resulting in only moderate external quantum efficiencies. Here, we report a facile, scalable, lithography-free method to generate controllable nanostructures with directional randomness and dimensional order, significantly boosting the efficiency of white OLEDs. Mechanical deformations form on the surface of poly(dimethylsiloxane) in response to compressive stress release, initialized by reactive ions etching with periodicity and depth distribution ranging from dozens of nanometers to micrometers. We demonstrate the possibility of independently tuning the average depth and the dominant periodicity. Integrating these nanostructures into a two-unit tandem white organic light-emitting diode, a maximum external quantum efficiency of 76.3% and a luminous efficacy of 95.7 lm W−1 are achieved with extracted substrate modes. The enhancement factor of 1.53 ± 0.12 at 10,000 cd m−2 is obtained. An optical model is built by considering the dipole orientation, emitting wavelength, and the dipole position on the sinusoidal nanotexture.
  • Item
    Photomodulation of lymphatic delivery of liposomes to the brain bypassing the blood-brain barrier: new perspectives for glioma therapy
    (Berlin : de Gruyter, 2021) Semyachkina-Glushkovskaya, Oxana; Fedosov, Ivan; Shirokov, Alexander; Vodovozova, Elena; Alekseeva, Anna; Khorovodov, Alexandr; Blokhina, Inna; Terskov, Andrey; Mamedova, Aysel; Klimova, Maria; Dubrovsky, Alexander; Ageev, Vasily; Agranovich, Ilana; Vinnik, Valeria; Tsven, Anna; Sokolovski, Sergey; Rafailov, Edik; Penzel, Thomas; Kurths, Jürgen
    The blood-brain barrier (BBB) has a significant contribution to the protection of the central nervous system (CNS). However, it also limits the brain drug delivery and thereby complicates the treatment of CNS diseases. The development of safe methods for an effective delivery of medications and nanocarriers to the brain can be a revolutionary step in the overcoming this limitation. Here, we report the unique properties of the lymphatic system to deliver tracers and liposomes to the brain meninges, brain tissues, and glioma in rats. Using a quantum-dot-based 1267 nm laser (for photosensitizer-free generation of singlet oxygen), we clearly demonstrate photostimulation of lymphatic delivery of liposomes to glioma as well as lymphatic clearance of liposomes from the brain. These pilot findings open promising perspectives for photomodulation of lymphatic delivery of drugs and nanocarriers to the brain pathology bypassing the BBB. The lymphatic “smart” delivery of liposomes with antitumor drugs in the new brain tumor branches might be a breakthrough strategy for the therapy of gliomas.