Search Results

Now showing 1 - 2 of 2
  • Item
    Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation
    (Weinheim : Wiley-VCH, 2021) Schultz, Johannes; Kirner, Felizitas; Potapov, Pavel; Büchner, Bernd; Lubk, Axel; Sturm, Elena V.
    Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Plasma-based VAD process for multiply doped glass powders and high-performance fiber preforms with outstanding homogeneity
    (Hoboken, NJ : Wiley Interscience, 2020) Trautvetter, Tom; Schäfer, Jan; Benzine, Omar; Methling, Ralf; Baierl, Hardy; Reichel, Volker; Dellith, Jan; Köpp, Daniel; Hempel, Frank; Stankov, Marjan; Baeva, Margarita; Foest, Rüdiger; Wondraczek, Lothar; Wondraczek, Katrin; Bartelt, Hartmut
    An innovative approach using the vapor axial deposition (VAD), for the preparation of silica-based high-power fiber laser preforms, is described in this study. The VAD uses a plasma deposition system operating at atmospheric pressure, fed by a single, chemically adapted solution containing precursors of laser-active dopants (e.g., Yb2O3), glass-modifier species (e.g., Al2O3), and the silica matrix. The approach enables simultaneous doping with multiple optically active species and overcomes some of the current technological limitations encountered with well-established fiber preform technologies in terms of dopant distribution, doping levels, and achievable active core diameter. The deposition of co-doped silica with outstanding homogeneity is proven by Raman spectroscopy and electron probe microanalysis. Yb2O3 concentrations are realized up to 0.3 mol% in SiO2, with simultaneous doping of 3 mol% of Al2O3.