Search Results

Now showing 1 - 3 of 3
  • Item
    Constraining the formation of the Milky Way: Ages
    (Les Ulis : EDP Sciences, 2013) Chiappini, C.; Minchev, I.; Martig, M.
    We present a new approach for studying the chemodynamical evolution of the Milky Way, which combines a thin disk chemical evolution model with the dynamics from N-body simulation of a galaxy with properties similar to those of our Galaxy. A cosmological re-simulation is used as a surrogate in order to extract ∼11 Gyrs of self-consistent dynamical evolution. We are then in a position to quantify the impact of radial migration at the Solar Vicinity. We find that the distribution of birth radii, r0, of stars ending up in a solar neighborhood-like location after ∼11 Gyr of evolution peaks around r0 = 6 kpc due to radial migration. A wide range of birth radii is seen for different age groups. The strongest effect from radial migration is found for the oldest stars and it is connected to an early merger phase typical from cosmological simulations. We find that while the low-end in our simulated solar vicinity metallicity distribution is composed by stars with a wide range of birth radii, the tail at larger metallicities (0.25 <[Fe/H]< 0.6) results almost exclusively from stars with 3 < r0< 5 kpc. This is the region just inside the bar's corotation (CR), which is where the strongest outward radial migration occurs. The fraction of stars in this tail can, therefore, be related to the bar's dynamical properties, such as its strength, pattern speed and time evolution/formation. We show that one of the main observational constraints of this kind of models is the time variation of the abundance gradients in the disk. The most important outcome of our chemodynamical model is that, although we used only a thin-disc chemical evolution model, the oldest stars that are now in the solar vicinity show several of the properties usually attributed to the Galactic thick disc. In other words, in our model the MW "thick disc" emerges naturally from stars migrating from the inner disc very early on due to strong merger activity in the first couple of Gyr of disc formation, followed by further radial migration driven by the bar and spirals at later times. These results will be extended to other radius bins and more chemical elements in order to provide testable predictions once more precise information on ages and distances would become available (with Gaia, asteroseismology and future surveys such as 4MOST).
  • Item
    Lévy noise improves the electrical activity in a neuron under electromagnetic radiation
    (San Francisco, CA : Public Library of Science (PLoS), 2017) Wu, J.; Xu, Y.; Ma, J.
    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Levy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Levy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Levy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Levy noise intensity are depicted. The increasing of Levy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Levy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Levy noise distribution are detected.
  • Item
    Topological transitions in ac/dc-driven superconductor nanotubes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Fomin, Vladimir M.; Rezaev, Roman O.; Dobrovolskiy, Oleksandr V.
    Extending of nanostructures into the third dimension has become a major research avenue in condensed-matter physics, because of geometry- and topology-induced phenomena. In this regard, superconductor 3D nanoarchitectures feature magnetic field inhomogeneity, non-trivial topology of Meissner currents and complex dynamics of topological defects. Here, we investigate theoretically topological transitions in the dynamics of vortices and slips of the phase of the order parameter in open superconductor nanotubes under a modulated transport current. Relying upon the time-dependent Ginzburg–Landau equation, we reveal two distinct voltage regimes when (i) a dominant part of the tube is in either the normal or superconducting state and (ii) a complex interplay between vortices, phase-slip regions and screening currents determines a rich FFT voltage spectrum. Our findings unveil novel dynamical states in superconductor open nanotubes, such as paraxial and azimuthal phase-slip regions, their branching and coexistence with vortices, and allow for control of these states by superimposed dc and ac current stimuli.