Search Results

Now showing 1 - 3 of 3
  • Item
    Local difference measures between complex networks for dynamical system model evaluation
    (San Francisco, CA : Public Library of Science (PLoS), 2015) Lange, S.; Donges, J.F.; Volkholz, J.; Kurths, J.
  • Item
    Change in the embedding dimension as an indicator of an approaching transition
    (San Francisco, CA : Public Library of Science (PLoS), 2014) Neuman, Y.; Marwan, N.; Cohen, Y.
    Predicting a transition point in behavioral data should take into account the complexity of the signal being influenced by contextual factors. In this paper, we propose to analyze changes in the embedding dimension as contextual information indicating a proceeding transitive point, called OPtimal Embedding tRANsition Detection (OPERAND). Three texts were processed and translated to time-series of emotional polarity. It was found that changes in the embedding dimension proceeded transition points in the data. These preliminary results encourage further research into changes in the embedding dimension as generic markers of an approaching transition point.
  • Item
    Fluctuation-dissipation in thermoelectric sensors
    (Les-Ulis : EDP Science, 2023) Tran, N.A.M.; Dutt, A.S.; Pulumati, N.B.; Reith, H.; Hu, A.; Dumont, A.; Nielsch, K.; Tremblay, A.-M.S.; Schierning, G.; Reulet, B.; Szkopek, T.
    Thermoelectric materials exhibit correlated transport of charge and heat. The Johnson-Nyquist noise formula 4k B T R for the spectral density of voltage fluctuations accounts for fluctuations associated solely with Ohmic dissipation. Applying the fluctuation-dissipation theorem, we generalize the Johnson-Nyquist formula for thermoelectrics, finding an enhanced voltage fluctuation spectral density 4k B T R(1 + Z D T) at frequencies below a thermal cut-off frequency f T, where Z D T is the dimensionless thermoelectric device figure of merit. The origin of the enhancement in voltage noise is thermoelectric coupling of temperature fluctuations. We use a wideband , integrated thermoelectric micro-device to experimentally confirm our findings. Measuring the Z D T enhanced voltage noise, we experimentally resolve temperature fluctuations with a root mean square amplitude of at a mean temperature of 295 K. We find that thermoelectric devices can be used for thermometry with sufficient resolution to measure the fundamental temperature fluctuations described by the fluctuation-dissipation theorem.