Search Results

Now showing 1 - 10 of 26
  • Item
    Continuous electroosmotic sorting of particles in grooved microchannels
    (London : Royal Soc. of Chemistry, 2017) Dubov, Alexander L.; Molotilin, Taras Y.; Vinogradova, Olga I.
    We propose a novel microfluidic fractionation concept suitable for neutrally buoyant micron-sized particles. This approach takes advantage of the ability of grooved channel walls oriented at an angle to the direction of an external electric field to generate a transverse electroosmotic flow. Using computer simulations, we first demonstrate that the velocity of this secondary transverse flow depends on the distance from the wall, so neutrally buoyant particles, depending on their size and initial location, will experience different lateral displacements. We then optimize the geometry and orientation of the surface texture of the channel walls to maximize the efficiency of particle fractionation. Our method is illustrated in a full scale computer experiment where we mimic the typical microchannel with a bottom grooved wall and a source of polydisperse particles that are carried along the channel by the forward electroosmotic flow. Our simulations show that the particle dispersion can be efficiently separated by size even in a channel that is only a few texture periods long. These results can guide the design of novel microfluidic devices for efficient sorting of microparticles.
  • Item
    Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition
    (Washington, DC [u.a.] : Assoc., 2018) Keidel, Rico; Ghavami, Ali; Lugo, Dersy M.; Lotze, Gudrun; Virtanen, Otto; Beumers, Peter; Pedersen, Jan Skov; Bardow, Andre; Winkler, Roland G.; Richtering, Walter
    Adaptive hydrogels, often termed smart materials, are macromolecules whose structure adjusts to external stimuli. Responsive micro- and nanogels are particularly interesting because the small length scale enables very fast response times. Chemical cross-links provide topological constraints and define the three-dimensional structure of the microgels, whereas their porous structure permits fast mass transfer, enabling very rapid structural adaption of the microgel to the environment. The change of microgel structure involves a unique transition from a flexible, swollen finite-size macromolecular network, characterized by a fuzzy surface, to a colloidal particle with homogeneous density and a sharp surface. In this contribution, we determine, for the first time, the structural evolution during the microgel-to-particle transition. Time-resolved small-angle x-ray scattering experiments and computer simulations unambiguously reveal a two-stage process: In a first, very fast process, collapsed clusters form at the periphery, leading to an intermediate, hollowish core-shell structure that slowly transforms to a globule. This structural evolution is independent of the type of stimulus and thus applies to instantaneous transitions as in a temperature jump or to slower stimuli that rely on the uptake of active molecules from and/or exchange with the environment. The fast transitions of size and shape provide unique opportunities for various applications as, for example, in uptake and release, catalysis, or sensing.
  • Item
    Simultaneous Effect of Ultraviolet Radiation and Surface Modification on the Work Function and Hole Injection Properties of ZnO Thin Films
    (Weinheim : Wiley-VCH, 2020) Raoufi, Meysam; Hörmann, Ulrich; Ligorio, Giovanni; Hildebrandt, Jana; Pätzel, Michael; Schultz, Thorsten; Perdigon, Lorena; Koch, Norbert; List-Kratochvil, Emil; Hecht, Stefan; Neher, Dieter
    The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Using Active Surface Plasmons in a Multibit Optical Storage Device to Emulate Long-Term Synaptic Plasticity
    (Weinheim : Wiley-VCH, 2020) Rhim, Seon-Young; Ligorio, Giovanni; Hermerschmidt, Felix; Hildebrandt, Jana; Pätzel, Michael; Hecht, Stefan; List-Kratochvil, Emil J.W.
    Artificial intelligence takes inspiration from the functionalities and structure of the brain to solve complex tasks and allow learning. Yet, hardware realization that simulates the synaptic activities realized with electrical devices still lags behind computer software implementation, which has improved significantly during the past decade. Herein, the capability to emulate synaptic functionalities by exploiting surface plasmon polaritons (SPPs) is shown. By depositing photochromic switching molecules (diarylethene) on a thin film of gold, it is possible to reliably control the electronic configuration of the molecules upon illumination cycles with UV and visible light. These reversible changes modulate the dielectric function of the photochromic film and thus enable the effective control of the SPP dispersion relation at the molecule/gold interface. The plasmonic device displays fundamental functions of a synapse such as potentiation, depression, and long-term plasticity. The integration of such plasmonic devices in an artificial neural network is deployed in plasmonic neuroinspired circuits for optical computing and data transmission. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Reorientation mechanisms of block copolymer/CdSe quantum dot composites under application of an electric field
    (London : Royal Soc. of Chemistry, 2016) Kathrein, Christine C.; Pester, Christian; Ruppel, Markus; Jung, Maike; Zimmermann, Marc; Böker, Alexander
    Time- and temperature-resolved in situ birefringence measurements were applied to analyze the effect of nanoparticles on the electric field-induced alignment of a microphase separated solution of poly(styrene)-block-poly(isoprene) in toluene. Through the incorporation of isoprene-confined CdSe quantum dots the reorientation behavior is altered. Particle loading lowers the order–disorder transition temperature, and increases the defect density, favoring nucleation and growth as an alignment mechanism over rotation of grains. The temperature dependent alteration in the reorientation mechanism is analyzed via a combination of birefringence and synchrotron SAXS. The detailed understanding of the effect of nanoparticles on the reorientation mechanism is an important prerequisite for optimization of electric-field-induced alignment of block copolymer/nanoparticle composites where the block copolymer guides the nanoparticle self-assembly into anisotropic structures.
  • Item
    Quantifying Rate-and Temperature-Dependent Molecular Damage in Elastomer Fracture
    (College Park, Md. : APS, 2020) Slootman, Juliette; Waltz, Victoria; Yeh, C. Joshua; Baumann, Christoph; Göstl, Robert; Comtet, Jean; Creton, Costantino
    Elastomers are highly valued soft materials finding many applications in the engineering and biomedical fields for their ability to stretch reversibly to large deformations. Yet their maximum extensibility is limited by the occurrence of fracture, which is currently still poorly understood. Because of a lack of experimental evidence, current physical models of elastomer fracture describe the rate and temperature dependence of the fracture energy as being solely due to viscoelastic friction, with chemical bond scission at the crack tip assumed to remain constant. Here, by coupling new fluorogenic mechanochemistry with quantitative confocal microscopy mapping, we are able to quantitatively detect, with high spatial resolution and sensitivity, the scission of covalent bonds as ordinary elastomers fracture at different strain rates and temperatures. Our measurements reveal that, in simple networks, bond scission, far from being restricted to a constant level near the crack plane, can both be delocalized over up to hundreds of micrometers and increase by a factor of 100, depending on the temperature and stretch rate. These observations, permitted by the high fluorescence and stability of the mechanophore, point to an intricate coupling between strain-rate-dependent viscous dissipation and strain-dependent irreversible network scission. These findings paint an entirely novel picture of fracture in soft materials, where energy dissipated by covalent bond scission accounts for a much larger fraction of the total fracture energy than previously believed. Our results pioneer the sensitive, quantitative, and spatially resolved detection of bond scission to assess material damage in a variety of soft materials and their applications. © 2020 authors. Published by the American Physical Society.
  • Item
    Measuring rotational diffusion of colloidal spheres with confocal microscopy
    (London : Royal Soc. of Chemistry, 2016) Liu, Bing; Böker, Alexander
    We report an experimental method to measure the translational and rotational dynamics of colloidal spheres in three dimensions with confocal microscopy and show that the experimental values reasonably agree with the theoretical values. This method can be extended to study rotational dynamics in concentrated colloidal systems and complex bio-systems.
  • Item
    Multiphysics simulations of adaptive metasurfaces at the meta-atom length scale
    (Berlin : de Gruyter, 2020) Meyer, Sebastian; Tan, Zhi Yang; Chigrin, Dmitry N.
    Adaptive metasurfaces (MSs) provide immense control over the phase, amplitude and propagation direction of electromagnetic waves. Adopting phase-change materials (PCMs) as an adaptive medium allows us to tune functionality of MSs at the meta-atom length scale providing full control over MS (re-)programmability. Recent experimental progress in the local switching of PCM-based MSs promises to revolutionize adaptive photonics. Novel possibilities open new challenges, one of which is a necessity to understand and be able to predict the phase transition behavior at the sub-micrometer scale. A meta-atom can be switched by a local deposition of heat using optical or electrical pulses. The deposited energy is strongly inhomogeneous and the resulting phase transition is spatially non-uniform. The drastic change of the material properties during the phase transition leads to time-dependent changes in the absorption rate and heat conduction near the meta-atom. These necessitate a self-consistent treatment of electromagnetic, thermal and phase transition processes. Here, a self-consistent multiphysics description of an optically induced phase transition in MSs is reported. The developed model is used to analyze local tuning of a perfect absorber. A detailed understanding of the phase transition at the meta-atom length scale will enable a purposeful design of programmable adaptive MSs. © 2020 Sebastian Meyer, Dmitry N. Chigrin et al., published by De Gruyter, Berlin/Boston 2020.
  • Item
    Microgel that swims to the beat of light
    (Berlin ; Heidelberg : Springer, 2021) Mourran, Ahmed; Jung, Oliver; Vinokur, Rostislav; Möller, Martin
    Complementary to the quickly advancing understanding of the swimming of microorganisms, we demonstrate rather simple design principles for systems that can mimic swimming by body shape deformation. For this purpose, we developed a microswimmer that could be actuated and controlled by fast temperature changes through pulsed infrared light irradiation. The construction of the microswimmer has the following features: (i) it is a bilayer ribbon with a length of 80 or 120 μm, consisting of a thermo-responsive hydrogel of poly-N-isopropylamide coated with a 2-nm layer of gold and equipped with homogeneously dispersed gold nanorods; (ii) the width of the ribbon is linearly tapered with a wider end of 5 μm and a tip of 0.5 μm; (iii) a thickness of only 1 and 2 μm that ensures a maximum variation of the cross section of the ribbon along its length from square to rectangular. These wedge-shaped ribbons form conical helices when the hydrogel is swollen in cold water and extend to a filament-like object when the temperature is raised above the volume phase transition of the hydrogel at 32∘C. The two ends of these ribbons undergo different but coupled modes of motion upon fast temperature cycling through plasmonic heating of the gel-objects from inside. Proper choice of the IR-light pulse sequence caused the ribbons to move at a rate of 6 body length/s (500 μm/s) with the wider end ahead. Within the confinement of rectangular container of 30 μm height and 300 μm width, the different modes can be actuated in a way that the movement is directed by the energy input between spinning on the spot and fast forward locomotion.
  • Item
    Raman-Kerr Comb Generation Based on Parametric Wave Mixing in Strongly Driven Raman Molecular Gas Medium
    (2020) Benoît, Aurélien; Husakou, Anton; Beaudou, Benoît; Debord, Benoît; Gérôme, Frédéric; Benabid, Fetah
    We report on experimental and theoretical demonstrations of an optical comb spectrum based on a combination of cascaded stimulated Raman scattering and four-wave mixing mediated by Raman-induced nonresonant Kerr-type nonlinearity. This combination enabled us to transform a conventional quasiperiodic Raman comb into a comb with a single and smaller frequency spacing. This phenomenon is achieved using a hollow-core photonic crystal fiber filled with 40 bars of deuterium and pumped with a high-power picosecond laser. The resultant comb shows more than 100 spectral lines spanning over 220 THz from 800 nm to 1710 nm, with a total output power of 7.1 W. In contrast to a pure Raman comb, a 120 THz wide portion of the spectrum exhibits denser and equally spaced spectral lines with a frequency spacing of around 1.75 THz, which is much smaller than the lowest frequency of the three excited deuterium Raman resonances. A numerical solution of the generalized nonlinear Schrödinger equation in the slowly varying envelope approximation provides very good agreement with the experimental data. The additional sidebands are explained by cascaded four-wave mixing between preexisting spectral lines, mediated by the large Raman-induced optical nonlinearity. The use of such a technique for coherent comb generation is discussed. The results show a route to the generation of optical frequency combs that combine large bandwidth and high power controllable frequency spacing.