Search Results

Now showing 1 - 10 of 26
  • Item
    Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging
    (Washington, DC : ACS, 2020) García-Álvarez, Rafaela; Chen, Lisa; Nedilko, Alexander; Sánchez-Iglesias, Ana; Rix, Anne; Lederle, Wiltrud; Pathak, Vertika; Lammers, Twan; von Plessen, Gero; Kostarelos, Kostas; Liz-Marzán, Luis M.; Kuehne, Alexander J.C.; Chigrin, Dmitry N.
    Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.
  • Item
    Hierarchical fibrous guiding cues at different scales influence linear neurite extension
    ([Amsterdam] : Elsevier, 2020) Omidinia-Anarkoli, Abdolrahman; Ephraim, John Wesley; Rimal, Rahul; De Laporte, Laura
    Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 μm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite “decision-making” behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. Statement of Significance: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior. © 2020
  • Item
    Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale
    (Washington, DC : ACS Publications, 2017) Wang, Tao; Li, Peining; Chigrin, Dmitry N.; Giles, Alexander J.; Bezares, Francisco J.; Glembocki, Orest J.; Caldwell, Joshua D.; Taubner, Thomas
    A conventional thermal emitter exhibits a broad emission spectrum with a peak wavelength depending upon the operation temperature. Recently, narrowband thermal emission was realized with periodic gratings or single microstructures of polar crystals supporting distinct optical modes. Here, we exploit the coupling of adjacent phonon-polaritonic nanostructures, demonstrating experimentally that the nanometer-scale gaps can control the thermal emission frequency while retaining emission line widths as narrow as 10 cm-1. This was achieved by using deeply subdiffractional bowtie-shaped silicon carbide nanoantennas. Infrared far-field reflectance spectroscopy, near-field optical nanoimaging, and full-wave electromagnetic simulations were employed to prove that the thermal emission originates from strongly localized surface phonon-polariton resonances of nanoantenna structures. The observed narrow emission line widths and exceptionally small modal volumes provide new opportunities for the user-design of near- and far-field radiation patterns for advancements in infrared spectroscopy, sensing, signaling, communications, coherent thermal emission, and infrared photodetection. © 2017 American Chemical Society.
  • Item
    Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane
    (Weinheim : Wiley-VCH, 2019) Quilis, Nestor Gisbert; van Dongen, Marcel; Venugopalan, Priyamvada; Kotlarek, Daria; Petri, Christian; Cencerrado, Alberto Moreno; Stanescu, Sorin; Herrera, Jose Luis Toca; Jonas, Ulrich; Möller, Martin; Mourran, Ahmed; Dostalek, Jakub
    Collective (lattice) localized surface plasmons (cLSP) with actively tunable and extremely narrow spectral characteristics are reported. They are supported by periodic arrays of gold nanoparticles attached to a stimuli-responsive hydrogel membrane, which can on demand swell and collapse to reversibly modulate arrays period and surrounding refractive index. In addition, it features a refractive index-symmetrical geometry that promotes the generation of cLSPs and leads to strong suppression of radiative losses, narrowing the spectral width of the resonance, and increasing of the electromagnetic field intensity. Narrowing of the cLSP spectral band down to 13 nm and its reversible shifting by up to 151 nm is observed in the near infrared part of the spectrum by varying temperature and by solvent exchange for systems with a poly(N-isopropylacrylamide)-based hydrogel membrane that is allowed to reversibly swell and collapse in either one or in three dimensions. The reported structures with embedded periodic gold nanoparticle arrays are particularly attractive for biosensing applications as the open hydrogel structure can be efficiently post-modified with functional moieties, such as specific ligands, and since biomolecules can rapidly diffuse through swollen polymer networks. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Narrow Stimulated Resonance Raman Scattering and WGM Lasing in Small Conjugated Polymer Particles for Live Cell Tagging and Tracking
    (Weinheim : Wiley-VCH, 2020) Haehnle, Bastian; Lamla, Markus; Sparrer, Konstantin M.J.; Gather, Malte C.; Kuehne, Alexander J.C.
    Conjugated polymer particles are brightly fluorescing and stable materials for live cell imaging. Combination of conjugated polymers with a whispering gallery mode (WGM) resonator allows laser emission from microscale particles. Once internalized by cells, the mode pattern of the laser emission can be used for tagging and tracking, as each laser spectrum represents a bar code to identify individual cells. However, currently these particle systems are limited by their large size, which might interfere with cellular functions. Here, stimulated resonance Raman scattering (SRRS) in small conjugated polymer microparticles is presented as a new method for generating narrow emission as an alternative to WGM-based laser emission. This opens up spectral range for multiplexing optical readout and multicolor imaging of live cells. The synthesis of monodisperse micrometer-sized poly(fluorene-co-divinylbenzene) particles is discussed and their WGM and SRRS emission are characterized. Finally, how these particles and their emission can be employed in live cell imaging and tagging is showcased. © 2020 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces
    (Weinheim : Wiley-VCH, 2020) Michel, Ann-Katrin U.; Meyer, Sebastian; Essing, Nicolas; Lassaline, Nolan; Lightner, Carin R.; Bisig, Samuel; Norris, David J.; Chigrin, Dmitry N.
    Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs) are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and restricts device miniaturization. Thermal scanning-probe-induced local switching of the PCM germanium telluride is proposed to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. The design is based on a planar multilayer and does not require fabrication of protruding resonators as commonly applied in the literature. Instead, it is numerically demonstrated that a broad-band tuning of perfect absorption can be realized by the localized tip-induced crystallization of the PCM. The spectral response of the metasurface is explained using resonance mode analysis and numerical simulations. To facilitate experimental realization, a theoretical description of the tip-induced crystallization employing multiphysics simulations is provided to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. The concept can be applied not only for plasmonic sensing and spatial frequency filtering, but also be transferred to all-dielectric metasurfaces. © 2020 Wiley-VCH GmbH
  • Item
    The swimming of a deforming helix
    (Berlin ; Heidelberg : Springer, 2018) Koens, Lyndon; Zhang, Hang; Moeller, Martin; Mourran, Ahmed; Lauga, Eric
    Many microorganisms and artificial microswimmers use helical appendages in order to generate locomotion. Though often rotated so as to produce thrust, some species of bacteria such Spiroplasma, Rhodobacter sphaeroides and Spirochetes induce movement by deforming a helical-shaped body. Recently, artificial devices have been created which also generate motion by deforming their helical body in a non-reciprocal way (A. Mourran et al. Adv. Mater. 29, 1604825, 2017). Inspired by these systems, we investigate the transport of a deforming helix within a viscous fluid. Specifically, we consider a swimmer that maintains a helical centreline and a single handedness while changing its helix radius, pitch and wavelength uniformly across the body. We first discuss how a deforming helix can create a non-reciprocal translational and rotational swimming stroke and identify its principle direction of motion. We then determine the leading-order physics for helices with small helix radius before considering the general behaviour for different configuration parameters and how these swimmers can be optimised. Finally, we explore how the presence of walls, gravity, and defects in the centreline allow the helical device to break symmetries, increase its speed, and generate transport in directions not available to helices in bulk fluids.
  • Item
    Preliminary Study on the Application of Temperature Swing Adsorption in Aqueous Phase for Pesticide Removal
    (London [u.a.] : Institute of Physics, 2018) Aumeier, B.; Dang, H.Q.A.; Wessling, M.
    Temperature swing adsorption (TSA) is a well-established process for gas purification. In this work, the feasibility of TSA in aqueous phase was studied. This concept could enable in situ adsorbent regeneration and thus fostering sustainable decentralized adsorption processes applied to water treatment. The adsorption processes with the use of granular activated carbon (GAC) have been widely applied to remove the residual amounts of pesticides in water treatment. Amitrole was chosen as a typical pesticide in this study, GAC was selected as the main adsorbent for amitrole removal. Adsorption isotherm experiments were conducted at different temperatures of 20°C, 57°C and 94°C to identify the most appropriate sorptive – sorbent system for dynamic adsorption and TSA research. Once the isotherm experiments were accomplished, breakthrough curve experiments were subsequently investigated. Finally, TSA process was conducted with the activated carbon regeneration at the elevated temperature of 125°C. Consequently, initial obtained results proved the feasibility of the proposed TSA technique for pesticide removal in aqueous phase.
  • Item
    Tuning the Volume Phase Transition Temperature of Microgels by Light
    (Weinheim : Wiley-VCH, 2021) Jelken, Joachim; Jung, Se-Hyeong; Lomadze, Nino; Gordievskaya, Yulia D.; Kramarenko, Elena Yu.; Pich, Andrij; Santer, Svetlana
    Temperature-responsive microgels find widespread applications as soft materials for designing actuators in microfluidic systems, as carriers for drug delivery or catalysts, as functional coatings, and as adaptable sensors. The key property is their volume phase transition temperature, which allows for thermally induced reversible swelling/deswelling. It is determined by the gel's chemical structure as well as network topology and cannot be varied easily within one system. Here a paradigm change of this notion by facilitating a light-triggered reversible switching of the microgel volume in the range between 32 and 82 °C is suggested. Photo-sensitivity is introduced by photosensitive azobenzene containing surfactant, which forms a complex with microgels consisting of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-AAc) chains when assuming a hydrophobic trans-state, and prefers to leave the gel matrix in its cis-state. Using a similar strategy, it is demonstrated that at a fixed temperature, for example, 37 °C, one can reversibly change the microgel radius by a factor of 3 (7–21 µm) by irradiating either with UV (collapsed state) or green light (swollen state). It is envisaged that the possibility to deploy a swift external means of adapting the swelling behavior of microgels may impact and redefine the latter's application across all fields. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide
    (New York, NY : American Inst. of Physics, 2014) Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.
    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913-at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length. © 2014 Author(s).