Search Results

Now showing 1 - 5 of 5
  • Item
    Optical, electrical and chemical properties of PEO:I2 complex composite films
    (Heidelberg [u.a.] : Springer, 2022) Telfah, Ahmad; Al-Bataineh, Qais M.; Tolstik, Elen; Ahmad, Ahmad A.; Alsaad, Ahmad M.; Ababneh, Riad; Tavares, Carlos J.; Hergenröder, Roland
    Synthesized PEO:I2 complex composite films with different I2 concentrations were deposited onto fused silica substrates using a dip-coating method. Incorporation of PEO films with I2 increases the electrical conductivity of the composite, reaching a maximum of 46 mS/cm for 7 wt% I2. The optical and optoelectronic properties of the complex composite films were studied using the transmittance and reflectance spectra in the UV-Vis region. The transmittance of PEO decreases with increasing I2 content. From this study, the optical bandgap energy decreases from 4.42 to 3.28 eV as I2 content increases from 0 to 7 wt%. In addition, the refractive index for PEO films are in the range of 1.66 and 2.00.1H NMR spectra of pure PEO film shows two major peaks at 3.224 ppm and 1.038 ppm, with different widths assigned to the mobile polymer chains in the amorphous phase, whereas the broad component is assigned to the more rigid molecules in the crystalline phase, respectively. By adding I2 to the PEO, both peaks (amorphous and crystal) are shifted to lower NMR frequencies indicating that I2 is acting as a Lewis acid, and PEO is acting as Lewis base. Hence, molecular iodine reacts favorably with PEO molecules through a charge transfer mechanism, and the formation of triiodide (I3-), the iodite (IO2-) anion, I 2· · · PEO and I2+···PEO complexes. PEO:I2 complex composite films are expected to be suitable for optical, electrical, and optoelectronic applications.
  • Item
    Optical properties of In2O3 from experiment and first-principles theory: influence of lattice screening
    ([Bad Honnef] : Dt. Physikalische Ges., 2018) Schleife, André; Neumann, Maciej D.; Esser, Norbert; Galazka, Zbigniew; Gottwald, Alexander; Nixdorf, Jakob; Goldhahn, Rüdiger; Feneberg, Martin
    The framework of many-body perturbation theory led to deep insight into electronic structure and optical properties of diverse systems and, in particular, many semiconductors. It relies on an accurate approximation of the screened Coulomb electron–electron interaction W, that in current implementations is usually achieved by describing electronic interband transitions. However, our results for several oxide semiconductors indicate that for polar materials it is necessary to also account for lattice contributions to dielectric screening. To clarify this question in this work, we combine highly accurate experimentation and cutting-edge theoretical spectroscopy to elucidate the interplay of quasiparticle and excitonic effects for cubic bixbyite In2O3 across an unprecedentedly large photon energy range. We then show that the agreement between experiment and theory is excellent and, thus, validate that the physics of quasiparticle and excitonic effects is described accurately by these first-principles techniques, except for the immediate vicinity of the absorption onset. Finally, our combination of experimental and computational data clearly establishes the need for including a lattice contribution to dielectric screening in the screened electron–electron interaction, in order to improve the description of excitonic effects near the absorption edge.
  • Item
    Crosspolarization with imperfect infrared polarizers
    (Amsterdam [u.a.] Elsevier, 2022) Furchner, Andreas; Hinrichs, Karsten
    The analysis of vibrational bands is a core application of infrared (IR) spectroscopy. Polarization-dependent measurements enable the study of anisotropic materials. However, imperfect IR polarizers exhibit polarizer leakage, which causes pronounced bandshape and baseline distortions for samples with weak optical anisotropy. Based on the 4 × 4 Mueller-matrix formalism, we propose a polarimetric measurement scheme for handling imperfect polarizers and source prepolarization that delivers correct co- and crosspolarized transmission and reflection IR spectra. The scheme is applied to a weakly anisotropic polypropylene sheet, resolving crosspolarized signatures as small as 5⋅10−5. We determine the polymer's direction-dependent complex refractive index in the vibrational fingerprint range.
  • Item
    Hidden impurities in transparent conducting oxides: study of vacancies-related defects and impurities in (Cu–Ni) co-doped ZnO films
    (Heidelberg [u.a.] : Springer, 2022) Al-Bataineh, Qais M.; Ahmad, Ahmad A.; Aljarrah, Ihsan A.; Alsaad, Ahmad M.; Telfah, Ahmad
    The effect of hydrogen and nitrogen impurities on the physical properties of transparent conductive oxides is investigated in this study. Therefore, 5 wt.% of copper and 5 wt.% of nickel co-doped zinc oxide ((Cu–Ni)/ZnO) films were prepared using the sol–gel method. The (Cu–Ni)/ZnO films were annealed in an oven at 500 °C for 2 h under air, vacuum, nitrogen, and argon atmospheres. The synthesized zinc hydroxide film was transformed to zinc oxide film during the annealing by evaporating H 2O. Films annealed under the mentioned atmosphere including as-prepared one were characterized by analyzing with UV–Vis and FTIR spectra in addition to the 2D mapping electrical conductivity of the surface measured by the 4-point probe. The annealed films under air, vacuum, and argon atmospheres led to generate H-related impurities bounded to the oxygen vacancy (H O) which they act as shallow donor defects resulting in forming (Cu–Ni)/ZnO films into n-type materials. Whereas, the film annealed under a nitrogen atmosphere has N-related defects bounding to the zinc vacancy (N Zn) which they act as shallow acceptor defects resulting in transforming the film from n-type to p-type. These defects affect the optical, electrical, and optoelectronic properties of the (Cu–Ni)/ZnO films.
  • Item
    Self-organized formation of unidirectional and quasi-one-dimensional metallic Tb silicide nanowires on Si(110)
    (Amsterdam [u.a.] : Elsevier, 2022) Appelfeller, Stephan; Franz, Martin; Karadag, Murat; Kubicki, Milan; Zielinski, Robert; Krivenkov, Maxim; Varykhalov, Andrei; Preobrajenski, Alexei; Dähne, Mario
    Terbium induced nanostructures on Si(110) and their growth are thoroughly characterized by low energy electron diffraction, scanning tunneling microscopy and spectroscopy, core-level and valence band photoelectron spectroscopy, and angle-resolved photoelectron spectroscopy. For low Tb coverage, a wetting layer forms with its surface fraction continuously decreasing with increasing Tb coverage in favor of the formation of unidirectional Tb silicide nanowires. These nanowires show high aspect ratios for high annealing temperatures or on substrates already containing Tb in the bulk. Both wetting layer and nanowires are stable for temperatures up to 750°C. In contrast to the nanowires, the wetting layer is characterized by a band gap. Thus, the metallic nanowires, which show a quasi-one-dimensional electronic band structure, are embedded in a semiconducting surrounding of wetting layer and substrate, insulating the nanowires from each other.