Search Results

Now showing 1 - 10 of 26
  • Item
    Enhanced growth of lapine anterior cruciate ligament-derived fibroblasts on scaffolds embroidered from poly(L-lactide-co-ε-caprolactone) and polylactic acid threads functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams
    (Basel : Molecular Diversity Preservation International, 2020) Gögele, Clemens; Hahn, Judith; Elschner, Cindy; Breier, Annette; Schröpfer, Michaela; Prade, Ina; Meyer, Michael; Schulze-Tanzil, Gundula
    Reconstruction of ruptured anterior cruciate ligaments (ACLs) is limited by the availability and donor site morbidity of autografts. Hence, a tissue engineered graft could present an alternative in the future. This study was undertaken to determine the performance of lapine (L) ACL-derived fibroblasts on embroidered poly(l-lactide-co-e-caprolactone) (P(LA-CL)) and polylactic acid (PLA) scaffolds in regard to a tissue engineering approach for ACL reconstruction. Surface modifications of P(LA-CL)/PLA by gas-phase fluorination and cross-linking of a collagen foam using either ethylcarbodiimide (EDC) or hexamethylene diisocyanate (HMDI) were tested regarding their influence on cell adhesion, growth and gene expression. The experiments were performed using embroidered P(LA-CL)/PLA scaffolds that were seeded dynamically or statically with LACL-derived fibroblasts. Scaffold cytocompatibility, cell survival, numbers, metabolic activity, ultrastructure and sulfated glycosaminoglycan (sGAG) synthesis were evaluated. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of collagen type I (COL1A1), decorin (DCN), tenascin C (TNC), Mohawk (MKX) and tenomodulin (TNMD). All tested scaffolds were highly cytocompatible. A significantly higher cellularity and larger scaffold surface areas colonized by cells were detected in HMDI cross-linked and fluorinated scaffolds compared to those cross-linked with EDC or without any functionalization. By contrast, sGAG synthesis was higher in controls. Despite the fact that the significance level was not reached, gene expressions of ligament extracellular matrix components and differentiation markers were generally higher in fluorinated scaffolds with cross-linked collagen foams. LACL-derived fibroblasts maintained their differentiated phenotype on fluorinated scaffolds supplemented with a HMDI cross-linked collagen foam, making them a promising tool for ACL tissue engineering. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Viscoelastic Behavior of Embroidered Scaffolds for ACL Tissue Engineering Made of PLA and P(LA-CL) After In Vitro Degradation
    (Basel : Molecular Diversity Preservation International, 2019) Hahn, Judith; Schulze-Tanzil, Schulze-Tanzil; Schröpfer, Michaela; Meyer, Michael; Gögele, Clemens; Hoyer, Mariann; Spickenheuer, Axel; Heinrich, Gert; Breier, Annette
    A rupture of the anterior cruciate ligament (ACL) is the most common knee ligament injury. Current applied reconstruction methods have limitations in terms of graft availability and mechanical properties. A new approach could be the use of a tissue engineering construct that temporarily reflects the mechanical properties of native ligament tissues and acts as a carrier structure for cell seeding. In this study, embroidered scaffolds composed of polylactic acid (PLA) and poly(lactic-co-"-caprolactone) (P(LA-CL)) threads were tested mechanically for their viscoelastic behavior under in vitro degradation. The relaxation behavior of both scaffold types (moco: mono-component scaffold made of PLA threads, bico: bi-component scaffold made of PLA and P(LA-CL) threads) was comparable to native lapine ACL. Most of the lapine ACL cells survived 32 days of cell culture and grew along the fibers. Cell vitality was comparable for moco and bico scaffolds. Lapine ACL cells were able to adhere to the polymer surfaces and spread along the threads throughout the scaffold. The mechanical behavior of degrading matrices with and without cells showed no significant differences. These results demonstrate the potential of embroidered scaffolds as an ACL tissue engineering approach. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    PH-Responsive Biohybrid Carrier Material for Phenol Decontamination in Wastewater
    (Columbus, Ohio : American Chemical Soc., 2018) Pretscher, Martin; Pineda-Contreras, Beatriz A.; Kaiser, Patrick; Reich, Steffen; Schöbel, Judith; Kuttner, Christian; Freitag, Ruth; Fery, Andreas; Schmalz, Holger; Agarwal, Seema
    Smart polymers are a valuable platform to protect and control the activity of biological agents over a wide range of conditions, such as low pH, by proper encapsulation. Such conditions are present in olive oil mill wastewater with phenol as one of the most problematic constituents. We show that elastic and pH-responsive diblock copolymer fibers are a suitable carrier for Corynebacterium glutamicum, i.e., bacteria which are known for their ability to degrade phenol. Free C. glutamicum does not survive low pH conditions and fails to degrade phenol at low pH conditions. Our tea-bag like biohybrid system, where the pH-responsive diblock copolymer acts as a protecting outer shell for the embedded bacteria, allows phenol degradation even at low pH. Utilizing a two-step encapsulation process, planktonic cells were first encapsulated in poly(vinyl alcohol) to protect the bacteria against the organic solvents used in the second step employing coaxial electrospinning.
  • Item
    Sv40 transfected human anterior cruciate ligament derived ligamentocytes—suitable as a human in vitro model for ligament reconstruction?
    (Basel : Molecular Diversity Preservation International, 2020) Schulze-Tanzil, Gundula; Arnold, Philipp; Gögele, Clemens; Hahn, Judith; Breier, Annette; Meyer, Michael; Kohl, Benjamin; Schröpfer, Michaela; Schwarz, Silke
    Cultured human primary cells have a limited lifespan undergoing dedifferentiation or senescence. Anterior cruciate ligaments (ACL) are hypocellular but tissue engineering (TE) requires high cell numbers. Simian virus (SV) 40 tumor (T) antigen expression could extend the lifespan of cells. This study aimed to identify cellular changes induced by SV40 expression in human ACL ligamentocytes by comparing them with non-transfected ligamentocytes and tissue of the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40-year-old female donor after ACL rupture) were either transfected with a SV40 plasmid or remained non-transfected (control) before monitored for SV40 expression, survival, and DNA content. Protein expression of cultured ligamentocytes was compared with the donor tissue. Ligamentocyte spheroids were seeded on scaffolds embroidered either from polylactic acid (PLA) threads solely or combined PLA and poly (L-lactide-co-e-caprolactone) (P(LA-CL)) threads. These scaffolds were further functionalized with fluorination and fibrillated collagen foam. Cell distribution and survival were monitored for up to five weeks. The transfected cells expressed the SV40 antigen throughout the entire observation time, but often exhibited random and incomplete cell divisions with significantly more dying cells, significantly more DNA and more numerous nucleoli than controls. The expression profile of non-transfected and SV40-positive ligamentocytes was similar. In contrast to controls, SV40-positive cells formed larger spheroids, produced less vimentin and focal adhesions and died on the scaffolds after 21 d. Functionalized scaffolds supported human ligamentocyte growth. SV40 antigen expressing ligamentocytes share many properties with their non-transfected counterparts suggesting them as a model, however, applicability for TE is limited. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding
    (Basel : Molecular Diversity Preservation International (MDPI), 2022-2-26) Anju; Yadav, Raghvendra Singh; Pötschke, Petra; Pionteck, Jürgen; Krause, Beate; Kuřitka, Ivo; Vilčáková, Jarmila; Škoda, David; Urbánek, Pavel; Machovský, Michal; Masař, Milan; Urbánek, Michal
    CuxCo1-x Fe2O4 (x = 0.33,0.67,1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (Cu-CoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SEt) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.
  • Item
    Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model
    (Washington, DC : ACS Publications, 2020) Hassan, Ghada; Forsman, Nina; Wan, Xing; Keurulainen, Leena; Bimbo, Luis M.; Stehl, Susanne; van Charante, Frits; Chrubasik, Michael; Prakash, Aruna S.; Johansson, Leena-Sisko; Mullen, Declan C.; Johnston, Blair F.; Zimmermann, Ralf; Werner, Carsten; Yli-Kauhaluoma, Jari; Coenye, Tom; Saris, Per E.J.; Österberg, Monika; Moreira, Vânia M.
    Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials. © 2020 American Chemical Society.
  • Item
    Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines
    (Columbus, Ohio : American Chemical Society, 2021) Jatczak-Pawlik, Izabela; Gorzkiewicz, Michał; Studzian, Maciej; Zinke, Robin; Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Pułaski, Łukasz
    New therapeutic strategies for personalized medicine need to involve innovative pharmaceutical tools, for example, modular nanoparticles designed for direct immunomodulatory properties. We synthesized mannose-functionalized poly(propyleneimine) glycodendrimers with a novel architecture, where freely accessible mannose moieties are presented on poly(ethylene glycol)-based linkers embedded within an open-shell maltose coating. This design enhanced glycodendrimer bioactivity and led to complex functional effects in myeloid cells, with specific induction of interleukin-8 expression by mannose glycodendrimers detected in HL-60 and THP-1 cells. We concentrated on explaining the molecular mechanism of this phenomenon, which turned out to be different in both investigated cell lines: in HL-60 cells, transcriptional activation via AP-1 binding to the promoter predominated, while in THP-1 cells (which initially expressed less IL-8), induction was mediated mainly by mRNA stabilization. The success of directed immunomodulation, with synthetic design guided by assumptions about mannose-modified dendrimers as exogenous regulators of pro-inflammatory chemokine levels, opens new possibilities for designing bioactive nanoparticles. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Plant Coumarins with Anti-HIV Activity: Isolation and Mechanisms of Action
    (Basel : Molecular Diversity Preservation International, 2023) Sharapov, Ainur D.; Fatykhov, Ramil F.; Khalymbadzha, Igor A.; Zyryanov, Grigory V.; Chupakhin, Oleg N.; Tsurkan, Mikhail V.
    This review summarizes and systematizes the literature on the anti-HIV activity of plant coumarins with emphasis on isolation and the mechanism of their antiviral action. This review summarizes the information on the anti-HIV properties of simple coumarins as well as annulated furano- and pyranocoumarins and shows that coumarins of plant origin can act by several mechanisms: inhibition of HIV reverse transcriptase and integrase, inhibition of cellular factors that regulate HIV-1 replication, and transmission of viral particles from infected macrophages to healthy ones. It is important to note that some pyranocoumarins are able to act through several mechanisms or bind to several sites, which ensures the resistance of these compounds to HIV mutations. Here we review the last two decades of research on the anti-HIV activity of naturally occurring coumarins.
  • Item
    In search of a phosphorus dendrimer-based carrier of rose bengal: Tyramine linker limits fluorescent and phototoxic properties of a photosensitizer
    (Basel : Molecular Diversity Preservation International, 2020) Sztandera, Krzysztof; Marcinkowska, Monika; Gorzkiewicz, Michał; Janaszewska, Anna; Laurent, Regis; Zabłocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara
    Photodynamic therapy (PDT) is a skin cancer treatment alternative to chemotherapy and radiotherapy. This method exploits three elements: a phototoxic compound (photosensitizer), light source and oxygen. Upon irradiation by light of a specific wavelength, the photosensitizer generates reactive oxygen species triggering the cascade of reactions leading to cell death. The positive therapeutic effect of PDT may be limited due to low solubility, low tumor specificity and inefficient cellular uptake of photosensitizers. A promising approach to overcome these obstacles involves the use of nanocarrier systems. The aim of this initial study was to determine the potential of the application of phosphorus dendrimers as carriers of a photosensitizer—rose bengal (RB). The primary goal involved the synthesis and in vitro studies of covalent drug–dendrimer conjugates. Our approach allowed us to obtain RB–dendrimer conjugates with the use of tyramine as an aromatic linker between the carrier and the drug. The compounds were characterized by FT-IR,1H NMR,13C NMR,31P NMR, size and zeta potential measurements and spectrofluorimetric analysis. The dialysis to check the drug release from the conjugate, flow cytometry to specify intracellular uptake, and singlet oxygen generation assay were also applied. Finally, we used MTT assay to determine the biological activity of the tested compounds. The results of our experiments indicate that the conjugation of RB to phosphorus dendrimers via the tyramine linker decreases photodynamic activity of RB. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Elucidating the chemistry behind the reduction of graphene oxide using a green approach with polydopamine
    (Basel : MDPI, 2019) Silva, Cláudia; Simon, Frank; Friedel, Peter; Pötschke, Petra; Zimmerer, Cordelia
    A new approach using X-ray photoelectron spectroscopy (XPS) was employed to give insight into the reduction of graphene oxide (GO) using a green approach with polydopamine (PDA). In this approach, the number of carbon atoms bonded to OH and to nitrogen in PDA is considered and compared to the total intensity of the signal resulting from OH groups in polydopamine-reduced graphene oxide (PDA-GO) to show the reduction. For this purpose, GO and PDA-GO with different times of reduction were prepared and characterized by Raman Spectroscopy and XPS. The PDA layer was removed to prepare reduced graphene oxide (RGO) and the effect of all chemical treatments on the thermal and electrical properties of the materials was studied. The results show that the complete reduction of the OH groups in GO occurred after 180 min of reaction. It was also concluded that Raman spectroscopy is not well suited to determine if the reduction and restoration of the sp2 structure occurred. Moreover, a significant change in the thermal stability was not observed with the chemical treatments. Finally, the electrical powder conductivity decreased after reduction with PDA, increasing again after its removal. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.