Search Results

Now showing 1 - 10 of 11
  • Item
    Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2014) Wessling, M.; Morcillo, L. GarrigĆ³s; Abdu, S.
    Electro-convective vortices in ion concentration polarization under shear flow have been of practical relevance for desalination processes using electrodialysis. The phenomenon has been scientifically disregarded for decades, but is recently embraced by a growing fluid dynamics community due its complex superposition of multi-scale gradients in electrochemical potential and space charge interacting with emerging complex fluid momentum gradients. While the visualization, quantification and fundamental understanding of the often-chaotic fluid dynamics is evolving rapidly due to sophisticated simulations and experimentation, little is known whether these instabilities can be induced and affected by chemical topological heterogeneity in surface properties. In this letter, we report that polyelectrolyte layers applied as micropatterns on ion exchange membranes induce and facilitate the electro-osmotic fluid instabilities. The findings stimulate a variety of fundamental questions comparable to the complexity of today's turbulence research.
  • Item
    Self-Regenerating Soft Biophotovoltaic Devices
    (Washington, DC : ACS Publications, 2018) Qiu, Xinkai; CastaƱeda Ocampo, Olga; de Vries, Hendrik W.; van Putten, Maikel; Loznik, Mark; Herrmann, Andreas; Chiechi, Ryan C.
    This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms. Ā© 2018 American Chemical Society.
  • Item
    Oligothiophene-Based Phosphonates for Surface Modification of Ultraflat Transparent Conductive Oxides
    (Weinheim : Wiley-VCH, 2020) Timpel, Melanie; Nardi, Marco V.; Wegner, Berthold; Ligorio, Giovanni; Pasquali, Luca; Hildebrandt, Jana; PƤtzel, Michael; Hecht, Stefan; Ohta, Hiromichi; Koch, Norbert
    The self-assembly of electroactive organic molecules on transparent conductive oxides is a versatile strategy to engineer the interfacial energy-level alignment and to enhance charge carrier injection in optoelectronic devices. Via chemical grafting of an aromatic oligothiophene molecule by changing the position of the phosphonic acid anchoring group with respect to the organic moiety (terminal and internal), the direction of the main molecular dipole is changed, i.e., from parallel to perpendicular to the substrate, to study the molecular arrangement and electronic properties at the organicā€“inorganic interface. It is found that the observed work function increase cannot solely be predicted based on the calculated molecular dipole moment of the oligothiophene-based phosphonates. In addition, charge transfer from the substrate to the molecule has to be taken into account. Molecular assembly and induced electronic changes are analogous for both indium-tin oxide (ITO) and zinc oxide (ZnO), demonstrating the generality of the approach and highlighting the direct correlation between molecular coverage and electronic effects. Ā© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties
    (Washington, DC : ACS Publications, 2021) Rezvantalab, Sima; Maleki, Reza; Drude, Natascha Ingrid; Khedri, Mohammad; Jans, Alexander; Moraveji, Mostafa Keshavarz; Darguzyte, Milita; Ghasemy, Ebrahim; Tayebi, Lobat; Kiessling, Fabian
    Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random"model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface"mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis. Ā© 2021 The Authors. Published by American Chemical Society.
  • Item
    4D Printing of a Light-Driven Soft Actuator with Programmed Printing Density
    (Washington, DC : ACS Publications, 2020) Nishiguchi, Akihiro; Zhang, Hang; Schweizerhof, Sjƶren; Schulte, Marie Friederike; Mourran, Ahmed; Mƶller, Martin
    There is a growing interest in the concept of four-dimensional (4D) printing that combines a three-dimensional (3D) manufacturing process with dynamic modulation for bioinspired soft materials exhibiting more complex functionality. However, conventional approaches have drawbacks of low resolution, control of internal micro/nanostructure, and creation of fast, complex actuation due to a lack of high-resolution fabrication technology and suitable photoresist for soft materials. Here, we report an approach of 4D printing that develops a bioinspired soft actuator with a defined 3D geometry and programmed printing density. Multiphoton lithography (MPL) allows for controlling printing density in gels at pixel-by-pixel with a resolution of a few hundreds of nanometers, which tune swelling behaviors of gels in response to external stimuli. We printed a 3D soft actuator composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) and gold nanorods (AuNRs). To improve the resolution of printing, we synthesized a functional, thermoresponsive macrocrosslinker. Through plasmonic heating by AuNRs, nanocomposite-based soft actuators undergo nonequilibrium, programmed, and fast actuation. Light-mediated manufacture and manipulation (MPL and photothermal effect) offer the feasibility of 4D printing toward adaptive bioinspired soft materials. Copyright Ā© 2020 American Chemical Society.
  • Item
    Wet-Spinning of Biocompatible Coreā€“Shell Polyelectrolyte Complex Fibers for Tissue Engineering
    (Weinheim : Wiley-VCH, 2020) Cui, Qing; Bell, Daniel Josef; Rauer, Sebastian Bernhard; Wessling, Matthias
    Polyelectrolyte complex fibers (PEC fibers) have great potential with regard to biomedical applications as they can be fabricated from biocompatible and water-soluble polyelectrolytes under mild process conditions. The present publication describes a novel method for the continuous fabrication of PEC fibers in a water-based wet-spinning process by interfacial complexation within a coreā€“shell spinneret. This process combines the robustness and flexibility of nonsolvent-induced phase separation (NIPS) spinning processes conventionally used in the membrane industry with the complexation between oppositely charged polyelectrolytes. The produced fibers demonstrate a coreā€“shell structure with a low-density core and a highly porous polyelectrolyte complex shell of ā‰ˆ800 Ī¼m diameter. In the case of chitosan and polystyrene sulfonate (PSS), mechanical fiber properties could be enhanced by doping the PSS with poly(ethylene oxide) (PEO). The resulting CHI/PSS-PEO fibers present a Young modulus of 3.78 GPa and a tensile strength of 165 MPa, which is an excellent combination of elongation at break and break stress compared to literature. The suitability of the CHI/PSS-PEO fibers as a scaffold for cell culture applications is verified by a four-day cultivation of human HeLa cells on PEO-reinforced fibers with a subsequent analysis of cell viability by fluorescence-based live/dead assay. Ā© 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Multi-shell hollow nanogels with responsive shell permeability
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32ā€‰Ā°Cā€‰<ā€‰Tā€‰<ā€‰42ā€‰Ā°C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.
  • Item
    Manipulation of small particles at solid liquid interface: Light driven diffusioosmosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana
    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
  • Item
    Tunable Photomechanics in Diarylethene-Driven Liquid Crystal Network Actuators
    (Washington, DC : ACS Publications, 2020) Lahikainen, Markus; Kuntze, Kim; Zeng, Hao; Helantera, Seidi; Hecht, Stefan; Priimagi, Arri
    The response of soft actuators made of stimuli-responsive materials can be phenomenologically described by a stimulus-deformation curve, depicting the controllability and sensitivity of the actuator system. Manipulating such stimulus-deformation curve allows fabricating soft microrobots with reconfigurable actuation behavior, which is not easily achievable using conventional materials. Here, we report a light-driven actuator based on a liquid crystal polymer network containing diarylethene (DAE) photoswitches as cross-links, in which the stimulus-deformation curve under visible-light illumination is tuned with UV light. The tuning is brought about by the reversible electrocyclization of the DAE units. Because of the excellent thermal stability of the visible-absorbing closed-form DAEs, the absorbance of the actuator can be optically fixed to a desired value, which in turn dictates the efficiency of photothermally induced deformation. We employ the controllability in devising a logical AND gate with macroscopic output, i.e., an actuator that bends negligibly under UV or visible light irradiation, but with profound shape change when addressed to both simultaneously. The results provide design tools for reconfigurable microrobotics and polymer-based logic gating. Ā© 2020 American Chemical Society. All rights reserved.
  • Item
    Turning a Killing Mechanism into an Adhesion and Antifouling Advantage
    (Weinheim : Wiley-VCH, 2019) Dedisch, Sarah; Obstals, Fabian; los Santos Pereira, Andres; Bruns, Michael; Jakob, Felix; Schwaneberg, Ulrich; Rodriguezā€Emmenegger, Cesar
    Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a proteinā€“polymer hybrid to surfaces via physical interactions. The proteinā€“polymer hybrid consists of two blocks, a surface-affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer-living radical polymerization (SET-LRP). The mild conditions of SET-LRP of N-2-hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted-from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept. Ā© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim