Search Results

Now showing 1 - 10 of 92
Loading...
Thumbnail Image
Item

A Holistic Solution to Icing by Acoustic Waves: De-Icing, Active Anti-Icing, Sensing with Piezoelectric Crystals, and Synergy with Thin Film Passive Anti-Icing Solutions

2023, del Moral, Jaime, Montes, Laura, Rico‐Gavira, Victor Joaquin, López‐Santos, Carmen, Jacob, Stefan, Oliva‐Ramirez, Manuel, Gil‐Rostra, Jorge, Fakhfouri, Armaghan, Pandey, Shilpi, Gonzalez del Val, Miguel, Mora, Julio, García‐Gallego, Paloma, Ibáñez‐Ibáñez, Pablo Francisco, Rodríguez‐Valverde, Miguel Angel, Winkler, Andreas, Borrás, Ana, González‐Elipe, Agustin Rodriguez

Icing has become a hot topic both in academia and in the industry given its implications in transport, wind turbines, photovoltaics, and telecommunications. Recently proposed de-icing solutions involving the propagation of acoustic waves (AWs) at suitable substrates may open the path for a sustainable alternative to standard de-icing or anti-icing procedures. Herein, the fundamental interactions are unraveled that contribute to the de-icing and/or hinder the icing on AW-activated substrates. The response toward icing of a reliable model system consisting of a piezoelectric plate activated by extended electrodes is characterized at a laboratory scale and in an icing wind tunnel under realistic conditions. Experiments show that surface modification with anti-icing functionalities provides a synergistic response when activated with AWs. A thoughtful analysis of the resonance frequency dependence on experimental variables such as temperature, ice formation, or wind velocity demonstrates the application of AW devices for real-time monitoring of icing processes.

Loading...
Thumbnail Image
Item

Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo

2021, Pearson, Samuel, Feng, Jun, del Campo, Aránzazu

Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

Loading...
Thumbnail Image
Item

Photodoping and Fast Charge Extraction in Ionic Carbon Nitride Photoanodes

2021, Adler, Christiane, Selim, Shababa, Krivtsov, Igor, Li, Chunyu, Mitoraj, Dariusz, Dietzek, Benjamin, Durrant, James R., Beranek, Radim

Ionic carbon nitrides based on poly(heptazine imides) (PHI) represent a vigorously studied class of materials with possible applications in photocatalysis and energy storage. Herein, for the first time, the photogenerated charge dynamics in highly stable and binder-free PHI photoanodes using in operando transient photocurrents and spectroelectrochemical photoinduced absorption measurements is studied. It is discovered that light-induced accumulation of long-lived trapped electrons within the PHI film leads to effective photodoping of the PHI film, resulting in a significant improvement of photocurrent response due to more efficient electron transport. While photodoping is previously reported for various semiconductors, it has not been shown before for carbon nitride materials. Furthermore, it is found that the extraction kinetics of untrapped electrons are remarkably fast in these PHI photoanodes, with electron extraction times (ms) comparable to those measured for commonly employed metal oxide semiconductors. These results shed light on the excellent performance of PHI photoanodes in alcohol photoreforming, including very negative photocurrent onset, outstanding fill factor, and the possibility to operate under zero-bias conditions. More generally, the here reported photodoping effect and fast electron extraction in PHI photoanodes establish a strong rationale for the use of PHI films in various applications, such as bias-free photoelectrochemistry or photobatteries. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials

2019, Souchay, Daniel, Nentwig, Markus, Günther, Daniel, Keilholz, Simon, de Boor, Johannes, Zeugner, Alexander, Isaeva, Anna, Ruck, Michael, Wolter, Anja U.B., Büchnerde, Bernd, Oeckler, Oliver

The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.

Loading...
Thumbnail Image
Item

1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesis

2021, Najafidehaghani, Emad, Gan, Ziyang, George, Antony, Lehnert, Tibor, Ngo, Gia Quyet, Neumann, Christof, Bucher, Tobias, Staude, Isabelle, Kaiser, David, Vogl, Tobias, Hübner, Uwe, Kaiser, Ute, Eilenberger, Falk, Turchanin, Andrey

Lateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

2018, Herrmann, Janning F., Höppener, Christiane

Plasmonic nanoantennas have found broad applications in the fields of photovoltaics, electroluminescence, non-linear optics and for plasmon enhanced spectroscopy and microscopy. Of particular interest are fundamental limitations beyond the dipolar approximation limit. We introduce asymmetric gold nanoparticle antennas (AuNPs) with improved optical near-field properties based on the formation of sub-nanometer size gaps, which are suitable for studying matter with high-resolution and single molecule sensitivity. These dumbbell antennas are characterized in regard to their far-field and near-field properties and are compared to similar dimer and trimer antennas with larger gap sizes. The tailoring of the gap size down to sub-nanometer length scales is based on the integration of rigid macrocyclic cucurbituril molecules. Stable dimer antennas are formed with an improved ratio of the electromagnetic field enhancement and confinement. This ratio, taken as a measure of the performance of an antenna, can even exceed that exhibited by trimer AuNP antennas composed of comparable building blocks with larger gap sizes. Fluctuations in the far-field and near-field properties are observed, which are likely caused by distinct deviations of the gap geometry arising from the faceted structure of the applied colloidal AuNPs.

Loading...
Thumbnail Image
Item

Phase Selection in Mn–Si Alloys by Fast Solid-State Reaction with Enhanced Skyrmion Stability

2021, Li, Zichao, Xie, Yufang, Yuan, Ye, Ji, Yanda, Begeza, Viktor, Cao, Lei, Hübner, René, Rebohle, Lars, Helm, Manfred, Nielsch, Kornelius, Prucnal, Slawomir, Zhou, Shengqiang

B20-type transition-metal silicides or germanides are noncentrosymmetric materials hosting magnetic skyrmions, which are promising information carriers in spintronic devices. The prerequisite is to prepare thin films on technology-relevant substrates with magnetic skyrmions stabilized at a broad temperature and magnetic-field working window. A canonical example is the B20-MnSi film grown on Si substrates. However, the as-yet unavoidable contamination with MnSi1.7 occurs due to the lower nucleation temperature of this phase. In this work, a simple and efficient method to overcome this problem and prepare single-phase MnSi films on Si substrates is reported. It is based on the millisecond reaction between metallic Mn and Si using flash-lamp annealing (FLA). By controlling the FLA energy density, single-phase MnSi or MnSi1.7 or their mixture can be grown at will. Compared with bulk MnSi, the prepared MnSi films show an increased Curie temperature of up to 41 K. In particular, the magnetic skyrmions are stable over a much wider temperature and magnetic-field range than reported previously. The results constitute a novel phase selection approach for alloys and can help to enhance specific functional properties, such as the stability of magnetic skyrmions. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Robust Single Molecule Magnet Monolayers on Graphene and Graphite with Magnetic Hysteresis up to 28 K

2021, Spree, Lukas, Liu, Fupin, Neu, Volker, Rosenkranz, Marco, Velkos, Georgios, Wang, Yaofeng, Schiemenz, Sandra, Dreiser, Jan, Gargiani, Pierluigi, Valvidares, Manuel, Chen, Chia-Hsiang, Büchner, Bernd, Avdoshenko, Stanislav M., Popov, Alexey A.

The chemical functionalization of fullerene single molecule magnet Tb2@C80(CH2Ph) enables the facile preparation of robust monolayers on graphene and highly oriented pyrolytic graphite from solution without impairing their magnetic properties. Monolayers of endohedral fullerene functionalized with pyrene exhibit magnetic bistability up to a temperature of 28 K. The use of pyrene terminated linker molecules opens the way to devise integration of spin carrying units encapsulated by fullerene cages on graphitic substrates, be it single-molecule magnets or qubit candidates. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glasses

2019, Wei, Qi, Gostin, Petre Flaviu, Addison, Owen, Reed, Daniel, Calin, Mariana, Bera, Supriya, Ramasamy, Parthiban, Davenport, Alison

TiZrCuPdGa metallic glasses are under consideration for small dental biomedical implants. There is interest in replacing some of the Cu with Ga to improve the glass-forming ability and biocompatibility. Ti40Zr10Cu36-xPd14Gax (x = 0, 1, 2, 4, 8 and 10 at.%) metallic glasses in rod and ribbon forms were fabricated by mould casting and melt spinning, respectively, and electrochemically tested in a 0.9wt.% NaCl (0.154 M) solution. It has been shown that for both rod and ribbon samples Ga levels up to 8% have no significant effect on passive current density, pitting potential or cathodic reactivity in 0.9% NaCl at 37°C. Different pitting potential and corrosion potential values were found when ribbon and rod samples of the same composition were compared for all compositions apart from the one containing the highest Ga level (10%). This was attributed to structural relaxation occurring as a result of the slower cooling rates during casting rods compared with melt-spinning ribbons. Substitution of Ga for Cu in these metallic glasses therefore expected to have no significant effect on corrosion susceptibility. © The Author(s) 2019.

Loading...
Thumbnail Image
Item

Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts

2017-6-19, Bandari, Vineeth Kumar, Varadharajan, Lakshmi, Xu, Longqian, Jalil, Abdur Rehman, Devarajulu, Mirunalini, Siles, Pablo F., Zhu, Feng, Schmidt, Oliver G.

The investigation of charge transport in organic nanocrystals is essential to understand nanoscale physical properties of organic systems and the development of novel organic nanodevices. In this work, we fabricate organic nanocrystal diodes contacted by rolled-up robust nanomembranes. The organic nanocrystals consist of vanadyl phthalocyanine and copper hexadecafluorophthalocyanine heterojunctions. The temperature dependent charge transport through organic nanocrystals was investigated to reveal the transport properties of ohmic and space-charge-limited current under different conditions, for instance, temperature and bias