Search Results

Now showing 1 - 10 of 37
  • Item
    Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?
    (Washington, DC : ACS Publications, 2018) Pawar, Shital Patangrao; Rzeczkowski, Piotr; Pötschke, Petra; Krause, Beate; Bose, Suryasarathi
    Electromagnetic interference (EMI), an unwanted phenomenon, often affects the reliability of precise electronic circuitry. To prevent this, an effective shielding is prerequisite to protect the electronic devices. In this study, an attempt was made to understand how processing of polymeric blend nanocomposites involving multiwalled carbon nanotubes (MWCNTs) affects the evolving interconnected network structure of MWCNTs and eventually their EMI shielding properties. Thereby, the overall blend morphology and especially the connectivity of the polycarbonate (PC) component, in which the MWCNTs tend to migrate, as well as the perfectness of their migration, and the state of nanotube dispersion are considered. For this purpose, blends of varying composition of PC and poly(methyl methacrylate) were chosen as a model system as they show a phase diagram with lower critical solution temperature type of characteristic. Such blends were processed in two different ways: solution mixing (from the homogeneous state) and melt mixing (in the biphasic state). In both the processes, MWCNTs (3 wt %) were mixed into the blends, and the evolved structures (after phase separation induced by annealing in solution-mixed blends) and the quenched structures (as the blends exit the extruder) were systematically studied using transmission electron microscopy (TEM). Both the set of blends were subjected to the same thermal history, however, under different conditions such as under quiescent conditions (in the case of solution mixing) and under shear (in the case of melt mixing). The electrical volume conductivity and the evolved morphologies of these blend nanocomposites were evaluated and correlated with the measured EMI shielding behavior. The results indicated that irrespective of the type of processing, the MWCNTs localized in the PC component; driven by thermodynamic factors and depending on the blend composition, sea-island, cocontinuous, and phase-inverted structures evolved. Interestingly, the better interconnected network structures of MWCNTs observed using TEM in the solution-mixed samples together with larger nanotube lengths resulted in higher EMI shielding properties (-27 dB at 18 GHz) even if slightly higher electrical volume conductivities were observed in melt-mixed samples. Moreover, the shielding was absorption-driven, facilitated by the dense network of MWCNTs in the PC component of the blends, at any given concentration of nanotubes. Taken together, this study highlights the effects of different blend nanocomposite preparation methods (solution and melt) and the developed morphology and nanotube network structure in MWCNT filled blend nanocomposites on the EMI shielding behavior.
  • Item
    Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales
    (Weinheim : VCH Verl.-Ges., 2022) Schamberger, Barbara; Ziege, Ricardo; Anselme, Karine; Ben Amar, Martine; Bykowski, Michał; Castro, André P. G.; Cipitria, Amaia; Coles, Rhoslyn A.; Dimova, Rumiana; Eder, Michaela; Ehrig, Sebastian; Escudero, Luis M.; Evans, Myfanwy E.; Fernandes, Paulo R.; Fratzl, Peter; Geris, Liesbet; Gierlinger, Notburga; Hannezo, Edouard; Iglič, Aleš; Kirkensgaard, Jacob J. K.; Kollmannsberger, Philip; Kowalewska, Łucja; Kurniawan, Nicholas A.; Papantoniou, Ioannis; Pieuchot, Laurent; Pires, Tiago H. V.; Renner, Lars D.; Sageman‐Furnas, Andrew O.; Schröder‐Turk, Gerd E.; Sengupta, Anupam; Sharma, Vikas R.; Tagua, Antonio; Tomba, Caterina; Trepat, Xavier; Waters, Sarah L.; Yeo, Edwina F.; Roschger, Andreas; Bidan, Cécile M.; Dunlop, John W. C.
    Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
  • Item
    Thiophene-Bridged Donor–Acceptor sp2-Carbon-Linked 2D Conjugated Polymers as Photocathodes for Water Reduction
    (Weinheim : Wiley-VCH, 2021) Xu, Shunqi; Sun, Hanjun; Addicoat, Matthew; Biswal, Bishnu P.; He, Fan; Park, SangWook; Paasch, Silvia; Zhang, Tao; Sheng, Wenbo; Brunner, Eike; Hou, Yang; Richter, Marcus; Feng, Xinliang
    Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene-bridged donor–acceptor-based 2D sp2-carbon-linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron-accepting building block 2,3,8,9,14,15-hexa(4-formylphenyl) diquinoxalino[2,3-a:2′,3′-c]phenazine (HATN-6CHO) and the first electron-donating linker 2,2′-([2,2′-bithiophene]-5,5′-diyl)diacetonitrile (ThDAN) provides the 2D CCP-HATNThDAN (2D CCP-Th). Compared with the corresponding biphenyl-bridged 2D CCP-HATN-BDAN (2D CCP-BD), the bithiophene-based 2D CCP-Th exhibits a wide light-harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP-Th a promising candidate for PEC water reduction. As a result, 2D CCP-Th presents a superb H2-evolution photocurrent density up to ≈7.9 µA cm−2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm−2). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H2. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    In Situ Monitoring of Linear RGD-Peptide Bioconjugation with Nanoscale Polymer Brushes
    (Washington, DC : ACS Publications, 2017) Psarra, Evmorfia; König, Ulla; Müller, Martin; Bittrich, Eva; Eichhorn, Klaus-Jochen; Welzel, Petra B.; Stamm, Manfred; Uhlmann, Petra
    Bioinspired materials mimicking the native extracellular matrix environment are promising for biotechnological applications. Particularly, modular biosurface engineering based on the functionalization of stimuli-responsive polymer brushes with peptide sequences can be used for the development of smart surfaces with biomimetic cues. The key aspect of this study is the in situ monitoring and analytical verification of the biofunctionalization process on the basis of three complementary analytical techniques. In situ spectroscopic ellipsometry was used to quantify the amount of chemisorbed GRGDS at both the homopolymer poly(acrylic acid) (PAA) brush and the binary poly(N-isopropylacrylamide) (PNIPAAm)-PAA brushes, which was finally confirmed by an acidic hydrolysis combined with a subsequent reverse-phase high-performance liquid chromatography analysis. In situ attenuated total reflection-Fourier transform infrared spectroscopy provided a step-by-step detection of the biofunctionalization process so that an optimized protocol for the bioconjugation of GRGDS could be identified. The optimized protocol was used to create a temperature-responsive binary brush with a high amount of chemisorbed GRGDS, which is a promising candidate for the temperature-sensitive control of GRGDS presentation in further cell-instructive studies.
  • Item
    Enzymatic Catalysis at Nanoscale: Enzyme-Coated Nanoparticles as Colloidal Biocatalysts for Polymerization Reactions
    (Washington, DC : ACS Publications, 2017) Kreuzer, Lucas Philipp; Männel, Max Julius; Schubert, Jonas; Höller, Roland P. M.; Chanana, Munish
    Enzyme-catalyzed controlled radical polymerization represents a powerful approach for the polymerization of a wide variety of water-soluble monomers. However, in such an enzyme-based polymerization system, the macromolecular catalyst (i.e., enzyme) has to be separated from the polymer product. Here, we present a compelling approach for the separation of the two macromolecular species, by taking the catalyst out of the molecular domain and locating it in the colloidal domain, ensuring quasi-homogeneous catalysis as well as easy separation of precious biocatalysts. We report on gold nanoparticles coated with horseradish peroxidase that can catalyze the polymerization of various monomers (e.g., N-isopropylacrylamide), yielding thermoresponsive polymers. Strikingly, these biocatalyst-coated nanoparticles can be recovered completely and reused in more than three independent polymerization cycles, without significant loss of their catalytic activity.
  • Item
    Methods to characterize the dispersability of carbon nanotubes and their length distribution
    (Weinheim : Wiley-VCH Verl., 2012) Krause, Beate; Mende, Mandy; Petzold, Gudrun; Boldt, Regine; Pötschke, Petra
    Two main properties of carbon nanotube (CNT) materials are discussed in this contribution. First, a method to characterize the dispersability of CNT materials in aqueous surfactant solutions in presented, which also allows conclusions towards the dispersability in other media, like polymer melts. On the other hand it is shown, how the length of CNTs before and after processing, e.g., after melt mixing with thermoplastics, can be quantified. Both methods are illustrated with examples and the practical relevance is shown. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
    (Weinheim : Wiley-VCH, 2020) Ditte, Kristina; Perez, Jonathan; Chae, Soosang; Hambsch, Mike; Al-Hussein, Mahmoud; Komber, Hartmut; Formanek, Peter; Mannsfeld, Stefan C.B.; Fery, Andreas; Kiriy, Anton; Lissel, Franziska
    Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers—semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)—in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2 V−1 s−1, in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2 V−1 s−1). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Devulcanization of Waste Rubber and Generation of Active Sites for Silica Reinforcement
    (Washington, DC : ACS Publications, 2019) Ghorai, Soumyajit; Mondal, Dipankar; Hait, Sakrit; Ghosh, Anik Kumar; Wiessner, Sven; Das, Amit; De, Debapriya
    Each year, hundreds of millions of tires are produced and ultimately disposed into nature. To address this serious environmental issue, devulcanization could be one of the sustainable solutions that still remains as one of the biggest challenges across the globe. In this work, sulfur-vulcanized natural rubber (NR) is mechanochemically devulcanized utilizing a silane-based tetrasulfide as a devulcanizing agent, and subsequently, silica (SiO2)-based rubber composites are prepared. This method not only breaks the sulfur–sulfur cross-links but also produces reactive poly(isoprene) chains to interact with silica. The silica natural rubber composites are prepared by replacing 30% fresh NR by devulcanized NR with varying contents of silica. The composites exhibit excellent mechanical properties, tear strength, abrasion resistance, and dynamic mechanical properties as compared with the fresh natural rubber silica composites. The tensile strength of devulcanized rubber-based silica composites is ∼20 MPa, and the maximum elongation strain is ∼921%. The devulcanized composites are studied in detail by chemical, mechanical, and morphological analyses. Thus, the value added by the devulcanized rubber could attract the attention of recycling community for its sustainable applications.
  • Item
    Tuneable Dielectric Properties Derived from Nitrogen-Doped Carbon Nanotubes in PVDF-Based Nanocomposites
    (Washington, DC : ACS Publications, 2018) Pawar, Shital Patangrao; Arjmand, Mohammad; Pötschke, Petra; Krause, Beate; Fischer, Dieter; Bose, Suryasarathi; Sundararaj, Uttandaraman
    Nitrogen-doped multiwall carbon nanotubes (N-MWNTs) with different structures were synthesized by employing chemical vapor deposition and changing the argon/ethane/nitrogen gas precursor ratio and synthesis time, and broadband dielectric properties of their poly(vinylidene fluoride) (PVDF)-based nanocomposites were investigated. The structure, morphology, and electrical conductivity of synthesized N-MWNTs were assessed via Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy, and powder conductivity techniques. The melt compounded PVDF nanocomposites manifested significantly high real part of the permittivity (ϵ′) along with low dissipation factor (tan δϵ) in 0.1 kHz to 1 MHz frequency range, suggesting use as efficient charge-storage materials. Longer synthesis time resulted in enhanced carbon purity as well as higher thermal stability, determined via TGA analysis. The inherent electrical conductivity of N-MWNTs scaled with the carbon purity. The charge-storage ability of the developed PVDF nanocomposites was commensurate with the amount of the nitrogen heteroatom (i.e., self-polarization), carbon purity, and inherent electrical conductivity of N-MWNTs and increased with better dispersion of N-MWNTs in PVDF.
  • Item
    Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications
    (Manchester, NH : Wiley, 2019) Naji, Ahmed; Krause, Beate; Pötschke, Petra; Ameli, Amir
    Conductive polymer composites (CPCs) with high electrical and thermal conductivities are demanded for bipolar plates of fuel cells. In this work, CPCs of polycarbonate (PC) filled with carbon nanotube (CNT), carbon fiber (CF), graphite (G), and their double and triple hybrids were prepared using solution casting method followed by compression molding. The results showed that the electrical percolation thresholds for the PC-CNT and PC-CF were ~1 wt% and ~10 wt%, respectively, while no clear threshold was found for PC-G composites. Addition of 3–5 wt% CNT improved the electrical conductivity of PC-CF and PC-G systems up to 6 orders of magnitude and enhanced the thermal conductivity as much as 65%. The results of triple hybrid CPCs (with constant loading of 63 wt%) indicated that the combination of highest electrical and thermal conductivities is achieved when the CF and CNT loadings were near their percolation thresholds. Therefore, a triple filler system of 3 wt% CNT, 10 wt% CF, and 50 wt% G resulted in a composite with the through-plane and in-plane electrical conductivity, and thermal conductivity values of 12.8 S/cm, 8.3 S/cm, and 1.7 W/m•K, respectively. The results offer a combination of properties surpassing the existing values and suitable for high-conductivity applications such as bipolar plates. POLYM. COMPOS., 40:3189–3198, 2019. © 2018 Society of Plastics Engineers.