Search Results

Now showing 1 - 9 of 9
  • Item
    First oxidation products from the reaction of hydroxyl radicals with isoprene for pristine environmental conditions
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Berndt, Torsten; Hyttinen, Noora; Herrmann, Hartmut; Hansel, Armin
    Isoprene, C5H8, inserts about half of the non-methane carbon flux of biogenic origin into the atmosphere. Its degradation is primarily initiated by the reaction with hydroxyl radicals. Here we show experimentally the formation of reactive intermediates and corresponding closed-shell products from the reaction of hydroxyl radicals with isoprene for low nitric oxide and low hydroperoxy radical conditions. Detailed product analysis is achieved by mass spectrometric techniques. Quantum chemical calculations support the usefulness of applied ionization schemes. Observed peroxy radicals are the isomeric HO-C5H8O2 radicals and their isomerization products HO-C5H8(O2)O2, bearing most likely an additional hydroperoxy group, and in traces HO-C5H8(O2)2O2 with two hydroperoxy groups. Main closed-shell products from unimolecular peroxy radical reactions are hydroperoxy aldehydes, C5H8O3, and smaller yield products with the composition C5H8O4 and C4H8O5. Detected signals of C10H18O4, C10H18O6, and C5H10O2 stand for products arising from peroxy radical self- and cross-reactions. © 2019, The Author(s).
  • Item
    Direct synthesis of benzylic amines by palladium-catalyzed carbonylative aminohomologation of aryl halides
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Peng, Jin-Bao; Wu, Fu-Peng; Xu, Cong; Qi, Xinxin; Ying, Jun; Wu, Xiao-Feng
    Benzylic amines are valuable compounds with important applications in areas including pharmaceuticals and agrochemicals. The known procedures for their synthesis are limited by difficulties in functionalizing the parent aminomethyl groups. On the other hand, carbonylation reactions offer a potent method to introduce carbonyl groups and homologate carbon chains. However, carbonylative aminohomologation of aryl halides is challenging due to competing reactions and the need to balance multiple sequential steps. Here we report a palladium-catalyzed carbonylative aminohomologation reaction for the direct aminomethylation of aryl halides. The reaction proceeds via a tandem palladium-catalyzed formylation, followed by imine formation and formic acid-mediated reduction. Useful functional groups including chloride, bromide, ester, ketone, nitro, and cyano are compatible with this reaction. Both aryl iodides and bromides are suitable substrates and a wide range of synthetically useful amines are efficiently obtained in moderate to excellent yields.
  • Item
    Efficient alkane oxidation under combustion engine and atmospheric conditions
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Wang, Zhandong; Ehn, Mikael; Rissanen, Matti P.; Garmash, Olga; Quéléver, Lauriane; Xing, Lili; Monge-Palacios, Manuel; Rantala, Pekka; Donahue, Neil M.; Berndt, Torsten; Sarathy, S. Mani
    Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O2. This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NOX, which typically rapidly terminates autoxidation in urban areas, the studied C6–C10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality.
  • Item
    Coagulation using organic carbonates opens up a sustainable route towards regenerated cellulose films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Nguyen, Mai N.; Kragl, Udo; Barke, Ingo; Lange, Regina; Lund, Henrik; Frank, Marcus; Springer, Armin; Aladin, Victoria; Corzilius, Björn; Hollmann, Dirk
    Due to their biodegradability, biocompatibility and sustainable nature, regenerated cellulose (RC) films are of enormous relevance for green applications including medicinal, environmental and separation technologies. However, the processes used so far are very hazardous to the environment and health. Here, we disclose a simple, fast, environmentally friendly, nontoxic and cost-effective processing method for preparing RC films. High quality non-transparent and transparent RC films and powders can be produced by dissolution with tetrabutylphosphonium hydroxide [TBPH]/[TBP]+[OH]− followed by coagulation with organic carbonates. Investigations on the coagulation mechanism revealed an extremely fast reaction between the carbonates and the hydroxide ions. The high-quality powders and films were fully characterized with respect to structure, surface morphology, permeation and selectivity. This method represents a future-oriented green alternative to known industrial processes. © 2020, The Author(s).
  • Item
    Electrochemical growth mechanism of nanoporous platinum layers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Stanca, Sarmiza-Elena; Vogt, Oliver; Zieger, Gabriel; Ihring, Andreas; Dellith, Jan; Undisz, Andreas; Rettenmayr, Markus; Schmidt, Heidemarie
    Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.
  • Item
    A 96-multiplex capillary electrophoresis screening platform for product based evolution of P450 BM3
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Gärtner, Anna; Ruff, Anna Joëlle; Schwaneberg, Ulrich
    The main challenge that prevents a broader application of directed enzyme evolution is the lack of high-throughput screening systems with universal product analytics. Most directed evolution campaigns employ screening systems based on colorimetric or fluorogenic surrogate substrates or universal quantification methods such as nuclear magnetic resonance spectroscopy or mass spectrometry, which have not been advanced to achieve a high-throughput. Capillary electrophoresis with a universal UV-based product detection is a promising analytical tool to quantify product formation. Usage of a multiplex system allows the simultaneous measurement with 96 capillaries. A 96-multiplexed capillary electrophoresis (MP-CE) enables a throughput that is comparable to traditional direct evolution campaigns employing 96-well microtiter plates. Here, we report for the first time the usage of a MP-CE system for directed P450 BM3 evolution towards increased product formation (oxidation of alpha-isophorone to 4-hydroxy-isophorone; highest reached total turnover number after evolution campaign: 7120 mol4-OH molP450−1). The MP-CE platform was 3.5-fold more efficient in identification of beneficial variants than the standard cofactor (NADPH) screening system.
  • Item
    Manipulation of small particles at solid liquid interface: Light driven diffusioosmosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana
    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.
  • Item
    Nanometer-thick lateral polyelectrolyte micropatterns induce macrosopic electro-osmotic chaotic fluid instabilities
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2014) Wessling, M.; Morcillo, L. Garrigós; Abdu, S.
    Electro-convective vortices in ion concentration polarization under shear flow have been of practical relevance for desalination processes using electrodialysis. The phenomenon has been scientifically disregarded for decades, but is recently embraced by a growing fluid dynamics community due its complex superposition of multi-scale gradients in electrochemical potential and space charge interacting with emerging complex fluid momentum gradients. While the visualization, quantification and fundamental understanding of the often-chaotic fluid dynamics is evolving rapidly due to sophisticated simulations and experimentation, little is known whether these instabilities can be induced and affected by chemical topological heterogeneity in surface properties. In this letter, we report that polyelectrolyte layers applied as micropatterns on ion exchange membranes induce and facilitate the electro-osmotic fluid instabilities. The findings stimulate a variety of fundamental questions comparable to the complexity of today's turbulence research.
  • Item
    Multi-shell hollow nanogels with responsive shell permeability
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.