Search Results

Now showing 1 - 2 of 2
  • Item
    Nickel-Catalyzed Carbonylative Synthesis of Functionalized Alkyl Iodides
    (Amsterdam : Elsevier B.V., 2018) Peng, J.-B.; Wu, F.-P.; Xu, C.; Qi, X.; Ying, J.; Wu, X.-F.
    Chemistry; Catalysis; Organic Synthesis © 2018 The Author(s)Functionalized alkyl iodides are important compounds in organic chemistry and biology. In this communication, we developed an interesting nickel-catalyzed carbonylative synthesis of functionalized alkyl iodides from aryl iodides and ethers. With Mo(CO)6 as the solid CO source, both cyclic and acyclic ethers were activated, which is also a challenging topic in organic synthesis. Functionalized alkyl iodides were prepared in moderate to excellent yields with outstanding functional group tolerance. Besides the high value of the obtained products, all the atoms from the starting materials were incorporated in the final products and the reaction had high atom efficiency as well.
  • Item
    Electron-transfer initiated nucleophilic substitution of thiophenolate anion by 1-chloro-substituted 4-(thiazol-2-ylazo)naphthalenes
    (Amsterdam : Elsevier B.V., 2020) Dmitrieva, E.; Yu, X.; Hartmann, H.
    In this work, the electrochemical transformation of 5-chloro-2-[(4-chloronaphthalen-1-yl)azo]thiazoles (A) into the corresponding radical anion A·− and its subsequent reaction with diphenyldisulfide (PhSSPh) was studied. It was found that the primarily generated azo anion radical A·− is able to initiate an electron transfer process which converts the disulfide into its thiolate anion PhS−. This anion was subsequently able to substitute the Cl- and H-groups by phenylmercapto moieties in the starting azo compound A. The structures of the phenylmercapto-substituted azo compounds thus generated were confirmed by thin-layer chromatography and mass spectrometry using independently prepared compounds as references.