Search Results

Now showing 1 - 2 of 2
  • Item
    Stabilization of the ζ-Cu10Sn3 Phase by Ni at Soldering-Relevant Temperatures
    (Heidelberg : Springer Verlag, 2020) Wieser, C.; Hügel, W.; Martin, S.; Freudenberger, J.; Leineweber, A.
    A current issue in electrical engineering is the enhancement of the quality of solder joints. This is mainly associated with the ongoing electrification of transportation as well as the miniaturization of (power) electronics. For the reliability of solder joints, intermetallic phases in the microstructure of the solder are of great importance. The formation of the intermetallic phases in the Cu-Sn solder system was investigated for different annealing temperatures between 472 K and 623 K using pure Cu as well as Cu-1at.%Ni and Cu-3at.%Ni substrate materials. These are relevant for lead frame materials in electronic components. The Cu and Cu-Ni alloys were in contact to galvanic plated Sn. This work is focused on the unexpected formation of the hexagonal ζ-(Cu,Ni)10Sn3 phase at annealing temperatures of 523–623 K, which is far below the eutectoid decomposition temperature of binary ζ-Cu10Sn3 of about 855 K. By using scanning electron microscopy, energy dispersive X-ray spectroscopy, electron backscatter diffraction and X-ray diffraction the presence of the ζ phase was confirmed and its structural properties were analyzed.
  • Item
    Expansion of the (BB)Ru metallacycle with coinage metal cations: Formation of B-M-Ru-B (M = Cu, Ag, Au) dimetalacyclodiboryls
    (Cambridge : Royal Society of Chemistry, 2018) Eleazer, B.J.; Smith, M.D.; Popov, A.A.; Peryshkov, D.V.
    In this work, we introduce a novel approach for the selective assembly of heterometallic complexes by unprecedented coordination of coinage metal cations to strained single ruthenium-boron bonds on a surface of icosahedral boron clusters. M(i) cations (M = Cu, Ag, and Au) insert into B-Ru bonds of the (BB)-carboryne complex of ruthenium with the formation of four-membered B-M-Ru-B metalacycles. Results of theoretical calculations suggest that bonding within these metalacycles can be best described as unusual three-center-two-electron B-M⋯Ru interactions that are isolobal to B-H⋯Ru borane coordination for M = Cu and Ag, or the pairs of two-center-two electron B-Au and Au-Ru interactions for M = Au. These transformations comprise the first synthetic route to exohedral coinage metal boryl complexes of icosahedral closo-{C2B10} clusters, which feature short Cu-B (2.029(2) Å) and Ag-B (2.182(3) Å) bonds and the shortest Au-B bond (2.027(2) Å) reported to date. The reported heterometallic complexes contain Cu(i) and Au(i) centers in uncharacteristic square-planar coordination environments. These findings pave the way to rational construction of a broader class of multimetallic architectures featuring M-B bonds.