Search Results

Now showing 1 - 10 of 10
  • Item
    Devulcanization of Waste Rubber and Generation of Active Sites for Silica Reinforcement
    (Washington, DC : ACS Publications, 2019) Ghorai, Soumyajit; Mondal, Dipankar; Hait, Sakrit; Ghosh, Anik Kumar; Wiessner, Sven; Das, Amit; De, Debapriya
    Each year, hundreds of millions of tires are produced and ultimately disposed into nature. To address this serious environmental issue, devulcanization could be one of the sustainable solutions that still remains as one of the biggest challenges across the globe. In this work, sulfur-vulcanized natural rubber (NR) is mechanochemically devulcanized utilizing a silane-based tetrasulfide as a devulcanizing agent, and subsequently, silica (SiO2)-based rubber composites are prepared. This method not only breaks the sulfur–sulfur cross-links but also produces reactive poly(isoprene) chains to interact with silica. The silica natural rubber composites are prepared by replacing 30% fresh NR by devulcanized NR with varying contents of silica. The composites exhibit excellent mechanical properties, tear strength, abrasion resistance, and dynamic mechanical properties as compared with the fresh natural rubber silica composites. The tensile strength of devulcanized rubber-based silica composites is ∼20 MPa, and the maximum elongation strain is ∼921%. The devulcanized composites are studied in detail by chemical, mechanical, and morphological analyses. Thus, the value added by the devulcanized rubber could attract the attention of recycling community for its sustainable applications.
  • Item
    Selective hydrogenation of fluorinated arenes using rhodium nanoparticles on molecularly modified silica
    (London : RSC Publ., 2020) Kacem, Souha; Emondts, Meike; Bordet, Alexis; Leitner, Walter
    The production of fluorinated cyclohexane derivatives is accomplished through the selective hydrogenation of readily available fluorinated arenes using Rh nanoparticles on molecularly modified silica supports (Rh@Si-R) as highly effective and recyclable catalysts. The catalyst preparation comprises grafting non-polar molecular entities on the SiO2 surface generating a hydrophobic environment for controlled deposition of well-defined rhodium particles from a simple organometallic precursor. A broad range of fluorinated cyclohexane derivatives was shown to be accessible with excellent efficacy (0.05-0.5 mol% Rh, 10-55 bar H2, 80-100 °C, 1-2 h), including industrially relevant building blocks. Addition of CaO as scavenger for trace amounts of HF greatly improves the recyclability of the catalytic system and prevents the risks associated to the presence of HF, without compromising the activity and selectivity of the reaction. © The Royal Society of Chemistry.
  • Item
    Highly active heterogeneous hydrogenation catalysts prepared from cobalt complexes and rice husk waste
    (London : RSC Publ., 2022) Unglaube, Felix; Schlapp, Janina; Quade, Antje; Schäfer, Jan; Mejía, Esteban
    The utilization and valorization of agricultural waste is a key strategy for the implementation of a sustainable economy to lessen the environmental footprint of human activities on Earth. This work describes the use of rice husk (RH) from agricultural waste to prepare a highly active catalyst for the reduction of nitro compounds. RH was impregnated with various cobalt complexes bearing N-donor ligands, then pyrolyzed and the resulting composite was etched with a base to remove the silica domains. The composition and morphology of the prepared materials were investigated by IR, AAS, ICP-OES, XRD, BET, XPS and SEM technics. The material showed excellent activity and selectivity in the hydrogenation of nitro groups in aromatic and aliphatic substrates. A remarkable selectivity towards nitro groups was found in the presence of various reactive functionalities, including halogens, carbonyls, borates, and nitriles. Apart from their excellent activity and selectivity, these catalysts showed remarkable stability, allowing their easy recovery and multiple reuse without requiring re-activation.
  • Item
    Large-area wet-chemical deposition of nanoporous tungstic silica coatings
    (London [u.a.] : RSC, 2015) Nielsen, K.H.; Wondraczek, K.; Schubert, U.S.; Wondraczek, L.
    We report on a facile procedure for synthesis of nanoporous coatings of tungstic silica through wet-chemical deposition and post-treatment of tungsten-doped potassium silicate solutions. The process relies on an aqueous washing and ion exchange step where dispersed potassium salt deposits are removed from a 150 nm silicate gel layer. Through an adjustment of the pH value of the washing agent within the solubility regime of a tungstic salt precursor, the tungsten content of the remaining nanostructured coating can be controlled. We propose this route as a universal approach for the deposition of large-area coatings of nanoporous silica with the potential for incorporating a broad variety of other dopant species. As for the present case, we observe, on the one hand, antireflective properties which enable the reduction of reflection losses from float glass by up to 3.7 percent points. On the other hand, the incorporation of nanoscale tungstic precipitates provides a lever for tailoring the coating hydrophilicity and, eventually, also surface acidity. This may provide a future route for combining optical performance with anti-fouling functionality.
  • Item
    Tuning the magneto-optical response of TbPc2 single molecule magnets by the choice of the substrate
    (London [u.a.] : RSC, 2015) Robaschik, Peter; Fronk, Michael; Toader, Marius; Klyatskaya, Svetlana; Ganss, Fabian; Siles, Pablo F.; Schmidt, Oliver G.; Albrecht, Manfred; Hietschold, Michael; Ruben, Mario; Zahn, Dietrich R.T.; Salvan, Georgeta
    In this work, we investigated the magneto-optical response of thin films of TbPc2 on substrates which are relevant for (spin) organic field effect transistors (SiO2) or vertical spin valves (Co) in order to explore the possibility of implementing TbPc2 in magneto-electronic devices, the functionality of which includes optical reading. The optical and magneto-optical properties of TbPc2 thin films prepared by organic molecular beam deposition (OMBD) on silicon substrates covered with native oxide were investigated by variable angle spectroscopic ellipsometry (VASE) and magneto-optical Kerr effect (MOKE) spectroscopy at room temperature. The magneto-optical activity of the TbPc2 films can be significantly enhanced by one to two orders of magnitude upon changing the molecular orientation (from nearly standing molecules on SiO2/Si substrates to nearly lying molecules on perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) templated SiO2/Si substrates) or by using metallic ferromagnetic substrates (Co).
  • Item
    Carboxylic acids and esters as scaffold for cavities in porous single layer anti-reflective coatings of silica-titania with excellent optical and mechanical properties
    (Wuhan : Scientific Research Publishing, 2014) Menezes, E.; König, Peter; Jilavi, Mohammad H.; Oliveira de, Peter W.; Alves Junior, S.
    Anti-reflective (AR) single layer of silica-titania (SiO2-TiO2) coatings were obtained from sols containing pyromellitic dianhydride (PMDA) derivatives and Ti and Si precursors on glass substrate by dip-coating method. The coatings showed very high optical quality and the transmission was improved to up to 98.5%. Furthermore, the coatings also presented good mechanical stability.
  • Item
    Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
    (Pennington, NJ : ECS, 2023) Anand, K.; Schubert, M.A.; Corley-Wiciak, A.A.; Spirito, D.; Corley-Wiciak, C.; Klesse, W.M.; Mai, A.; Tillack, B.; Yamamoto, Y.
    Dislocation free local SiGe-on-insulator (SGOI) virtual substrate is fabricated using lateral selective SiGe growth by reduced pressure chemical vapor deposition. The lateral selective SiGe growth is performed around a ∼1.25 μm square Si (001) pillar in a cavity formed by HCl vapor phase etching of Si at 850 °C from side of SiO2/Si mesa structure on buried oxide. Smooth root mean square roughness of SiGe surface of 0.14 nm, which is determined by interface roughness between the sacrificially etched Si and the SiO2 cap, is obtained. Uniform Ge content of ∼40% in the laterally grown SiGe is observed. In the Si pillar, tensile strain of ∼0.65% is found which could be due to thermal expansion difference between SiO2 and Si. In the SiGe, tensile strain of ∼1.4% along 〈010〉 direction, which is higher compared to that along 〈110〉 direction, is observed. The tensile strain is induced from both [110] and [−110] directions. Threading dislocations in the SiGe are located only ∼400 nm from Si pillar and stacking faults are running towards 〈110〉 directions, resulting in the formation of a wide dislocation-free area in SiGe along 〈010〉 due to horizontal aspect ratio trapping.
  • Item
    Editors' Choice - Precipitation of Suboxides in Silicon, their Role in Gettering of Copper Impurities and Carrier Recombination
    (Pennington, NJ : ECS, 2020) Kissinger, G.; Kot, D.; Huber, A.; Kretschmer, R.; Müller, T.; Sattler, A.
    This paper describes a theoretical investigation of the phase composition of oxide precipitates and the corresponding emission of self-interstitials at the minimum of the free energy and their evolution with increasing number of oxygen atoms in the precipitates. The results can explain the compositional evolution of oxide precipitates and the role of self-interstitials therein. The formation of suboxides at the edges of SiO2 precipitates after reaching a critical size can explain several phenomena like gettering of Cu by segregation to the suboxide region and lifetime reduction by recombination of minority carriers in the suboxide. It provides an alternative explanation, based on minimized free energy, to the theory of strained and unstrained plates. A second emphasis was payed to the evolution of the morphology of oxide precipitates. Based on the comparison with results from scanning transmission electron microscopy the sequence of morphology evolution of oxide precipitates was deduced. It turned out that it is opposite to the sequence assumed until now. © 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
  • Item
    Kinetic and spectroscopic responses of pH-sensitive nanoparticles: Influence of the silica matrix
    (London : Royal Society of Chemistry, 2019) Clasen, A.; Wenderoth, S.; Tavernaro, I.; Fleddermann, J.; Kraegeloh, A.; Jung, G.
    Intracellular pH sensing with fluorescent nanoparticles is an emerging topic as pH plays several roles in physiology and pathologic processes. Here, nanoparticle-sized pH sensors (diameter far below 50 nm) for fluorescence imaging have been described. Consequently, a fluorescent derivative of pH-sensitive hydroxypyrene with pKa = 6.1 was synthesized and subsequently embedded in core and core-shell silica nanoparticles via a modified Stöber process. The detailed fluorescence spectroscopic characterization of the produced nanoparticles was carried out for retrieving information about the environment within the nanoparticle core. Several steady-state and time-resolved fluorescence spectroscopic methods hint to the screening of the probe molecule from the solvent, but it sustained interactions with hydrogen bonds similar to that of water. The incorporation of the indicator dye in the water-rich silica matrix neither changes the acidity constant nor dramatically slows down the protonation kinetics. However, cladding by another SiO2 shell leads to the partial substitution of water and decelerating the response of the probe molecule toward pH. The sensor is capable of monitoring pH changes in a physiological range by using ratiometric fluorescence excitation with λex = 405 nm and λex = 488 nm, as confirmed by the confocal fluorescence imaging of intracellular nanoparticle uptake.
  • Item
    Multi-walled carbon nanotube-based composite materials as catalyst support for water–gas shift and hydroformylation reactions
    (London : RSC Publishing, 2019) Wolf, Patrick; Logemann, Morten; Schörner, Markus; Keller, Laura; Haumann, Marco; Wessling, Matthias
    In times of depleting fossil fuel reserves, optimizing industrial catalytic reactions has become increasingly important. One possibility for optimization is the use of homogenous catalysts, which are advantageous over heterogeneous catalysts because of mild reaction conditions as well as higher selectivity and activity. A new emerging technology, supported ionic liquid phase (SILP), was developed to permanently immobilize homogeneous catalyst complexes for continuous processes. However, these SILP catalysts are unable to form freestanding supports by themselves. This study presents a new method to introduce the SILP system into a support made from multi-walled carbon nanotubes (MWCNT). In a first step, SILP catalysts were prepared for hydroformylation as well as low-temperature water–gas shift (WGS) reactions. These catalysts were integrated into freestanding microtubes formed from MWCNTs, with silica (for hydroformylation) or alumina particles (for WGS) incorporated. In hydroformylation, the activity increased significantly by around 400% when the pure MWCNT material was used as SILP support. An opposite trend was observed for WGS, where pure alumina particles exhibited the highest activity. A significant advantage of the MWCNT composite materials is the possibility to coat them with separation layers, which allows their application in membrane reactors for more efficient processes.