Search Results

Now showing 1 - 2 of 2
  • Item
    Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage
    (Cambridge : Royal Society of Chemistry, 2015) Oschatz, Martin; Zeiger, Marco; Jaeckel, Nicolas; Strubel, Patrick; Borchardt, Lars; Reinhold, Romy; Nickel, Winfried; Eckert, Jürgen; Presser, Volker; Kaskel, Stefan
    A new approach to produce carbide-derived carbon nanospheres of 20-200 nm in diameter based on a novel soft-templating technique is presented. Platinum catalysis is used for the cross-linking of liquid (allylhydrido)polycarbosilane polymer chains with para-divinylbenzene within oil-in-water miniemulsions. Quantitative implementation of the pre-ceramic polymer can be achieved allowing precise control over the resulting materials. After pyrolysis and high-temperature chlorine treatment, resulting particles offer ideal spherical shape, very high specific surface area (up to 2347 m^2/g^-1), and large micro/mesopore volume (up to 1.67 cm^3/g^-1). The internal pore structure of the nanospheres is controllable by the composition of the oil phase within the miniemulsions. The materials are highly suitable for electrochemical double-layer capacitors with high specific capacitances in aqueous 1 M Na2SO4 solution (110 F/g^-1) and organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile (130 F/g^-1).
  • Item
    General and selective deoxygenation by hydrogen using a reusable earth-abundant metal catalyst
    (Washington, D.C. : American Association for the Advancement of Science, 2019) Schwob, T.; Kunnas, P.; De, Jonge, N.; Papp, C.; Steinrück, H.-P.; Kempe, R.
    Chemoselective deoxygenation by hydrogen is particularly challenging but crucial for an efficient late-stage modification of functionality-laden fine chemicals, natural products, or pharmaceuticals and the economic upgrading of biomass-derived molecules into fuels and chemicals. We report here on a reusable earth-abundant metal catalyst that permits highly chemoselective deoxygenation using inexpensive hydrogen gas. Primary, secondary, and tertiary alcohols as well as alkyl and aryl ketones and aldehydes can be selectively deoxygenated, even when part of complex natural products, pharmaceuticals, or biomass-derived platform molecules. The catalyst tolerates many functional groups including hydrogenation-sensitive examples. It is efficient, easy to handle, and conveniently synthesized from a specific bimetallic coordination compound and commercially available charcoal. Selective, sustainable, and cost-efficient deoxygenation under industrially viable conditions seems feasible. © 2019 The Authors.