Search Results

Now showing 1 - 8 of 8
  • Item
    Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles
    (Basel : Molecular Diversity Preservation International (MDPI), 2015) Zaloga, Jan; Janko, Christina; Agarwal, Rohit; Nowak, Johannes; Müller, Robert; Boccaccini, Aldo R.; Lee, Geoffrey; Odenbach, Stefan; Lyer, Stefan; Alexiou, Christoph
    Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.
  • Item
    Revealing the Chemical Composition of Birch Pollen Grains by Raman Spectroscopic Imaging
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Stiebing, Clara; Post, Nele; Schindler, Claudia; Göhrig, Bianca; Lux, Harald; Popp, Jürgen; Heutelbeck, Astrid; Schie, Iwan W.
    The investigation of the biochemical composition of pollen grains is of the utmost interest for several environmental aspects, such as their allergenic potential and their changes in growth conditions due to climatic factors. In order to fully understand the composition of pollen grains, not only is an in-depth analysis of their molecular components necessary but also spatial information of, e.g., the thickness of the outer shell, should be recorded. However, there is a lack of studies using molecular imaging methods for a spatially resolved biochemical composition on a single-grain level. In this study, Raman spectroscopy was implemented as an analytical tool to investigate birch pollen by imaging single pollen grains and analyzing their spectral profiles. The imaging modality allowed us to reveal the layered structure of pollen grains based on the biochemical information of the recorded Raman spectra. Seven different birch pollen species collected at two different locations in Germany were investigated and compared. Using chemometric algorithms such as hierarchical cluster analysis and multiple-curve resolution, several components of the grain wall, such as sporopollenin, as well as the inner core presenting high starch concentrations, were identified and quantified. Differences in the concentrations of, e.g., sporopollenin, lipids and proteins in the pollen species at the two different collection sites were found, and are discussed in connection with germination and other growth processes.
  • Item
    Linear and non-linear optical imaging of cancer cells with silicon nanoparticles
    (Basel : Molecular Diversity Preservation International (MDPI), 2016) Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen
    New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.
  • Item
    Functional Delineation of a Protein–Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Insausti, Sara; Garcia-Porras, Miguel; Torralba, Johana; Morillo, Izaskun; Ramos-Caballero, Ander; de la Arada, Igor; Apellaniz, Beatriz; Caaveiro, Jose M. M.; Carravilla, Pablo; Eggeling, Christian; Rujas, Edurne; Nieva, Jose L.
    Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab–peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab–Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody–membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein–membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes.
  • Item
    Vibrational Spectroscopic Investigation of Blood Plasma and Serum by Drop Coating Deposition for Clinical Application
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Huang, Jing; Ali, Nairveen; Quansah, Elsie; Guo, Shuxia; Noutsias, Michel; Meyer-Zedler, Tobias; Bocklitz, Thomas; Popp, Jürgen; Neugebauer, Ute; Ramoji, Anuradha
    In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.
  • Item
    Presence of β-Lactamase-producing Enterobacterales and Salmonella Isolates in Marine Mammals
    (Basel : Molecular Diversity Preservation International (MDPI), 2021) Grünzweil, Olivia M.; Palmer, Lauren; Cabal, Adriana; Szostak, Michael P.; Ruppitsch, Werner; Kornschober, Christian; Korus, Maciej; Misic, Dusan; Bernreiter-Hofer, Tanja; Korath, Anna D. J.; Feßler, Andrea T.; Allerberger, Franz; Schwarz, Stefan; Spergser, Joachim; Müller, Elke; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf; Walzer, Chris; Smodlaka, Hrvoje; Loncaric, Igor
    Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.
  • Item
    Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Monecke, Stefan; Roberts, Marilyn C.; Braun, Sascha D.; Diezel, Celia; Müller, Elke; Reinicke, Martin; Linde, Jörg; Joshi, Prabhu Raj; Paudel, Saroj; Acharya, Mahesh; Chalise, Mukesh K.; Feßler, Andrea T.; Hotzel, Helmut; Khanal, Laxman; Koju, Narayan P.; Schwarz, Stefan; Kyes, Randall C.; Ehricht, Ralf
    Staphylococcus aureus is a widespread and common opportunistic bacterium that can colonise or infect humans as well as a wide range of animals. There are a few studies of both methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolated from monkeys, apes, and lemurs, indicating a presence of a number of poorly or unknown lineages of the pathogen. In order to obtain insight into staphylococcal diversity, we sequenced strains from wild and captive individuals of three macaque species (Macaca mulatta, M. assamensis, and M. sylvanus) using Nanopore and Illumina technologies. These strains were previously identified by microarray as poorly or unknown strains. Isolates of novel lineages ST4168, ST7687, ST7688, ST7689, ST7690, ST7691, ST7692, ST7693, ST7694, ST7695, ST7745, ST7746, ST7747, ST7748, ST7749, ST7750, ST7751, ST7752, ST7753, and ST7754 were sequenced and characterised for the first time. In addition, isolates belonging to ST2990, a lineage also observed in humans, and ST3268, a MRSA strain already known from macaques, were also included into the study. Mobile genetic elements, genomic islands, and carriage of prophages were analysed. There was no evidence for novel host-specific virulence factors. However, a conspicuously high rate of carriage of a pathogenicity island harbouring edinB and etD2/etE as well as a higher number of repeat units within the gene sasG (encoding an adhesion factor) than in human isolates were observed. None of the strains harboured the genes encoding Panton–Valentine leukocidin. In conclusion, wildlife including macaques may harbour an unappreciated diversity of S. aureus lineages that may be of clinical relevance for humans, livestock, or for wildlife conservation, given the declining state of many wildlife populations.
  • Item
    Label-Free Characterization of Macrophage Polarization Using Raman Spectroscopy
    (Basel : Molecular Diversity Preservation International (MDPI), 2023) Naumann, Max; Arend, Natalie; Guliev, Rustam R.; Kretzer, Christian; Rubio, Ignacio; Werz, Oliver; Neugebauer, Ute
    Macrophages are important cells of the innate immune system that play many different roles in host defense, a fact that is reflected by their polarization into many distinct subtypes. Depending on their function and phenotype, macrophages can be grossly classified into classically activated macrophages (pro-inflammatory M1 cells), alternatively activated macrophages (anti-inflammatory M2 cells), and non-activated cells (resting M0 cells). A fast, label-free and non-destructive characterization of macrophage phenotypes could be of importance for studying the contribution of the various subtypes to numerous pathologies. In this work, single cell Raman spectroscopic imaging was applied to visualize the characteristic phenotype as well as to discriminate between different human macrophage phenotypes without any label and in a non-destructive manner. Macrophages were derived by differentiation of peripheral blood monocytes of human healthy donors and differently treated to yield M0, M1 and M2 phenotypes, as confirmed by marker analysis using flow cytometry and fluorescence imaging. Raman images of chemically fixed cells of those three macrophage phenotypes were processed using chemometric methods of unmixing (N-FINDR) and discrimination (PCA-LDA). The discrimination models were validated using leave-one donor-out cross-validation. The results show that Raman imaging is able to discriminate between pro- and anti-inflammatory macrophage phenotypes with high accuracy in a non-invasive, non-destructive and label-free manner. The spectral differences observed can be explained by the biochemical characteristics of the different phenotypes.