Search Results

Now showing 1 - 3 of 3
  • Item
    On the Promotion of Catalytic Reactions by Surface Acoustic Waves
    (Weinheim : Wiley-VCH, 2020) von Boehn, Bernhard; Foerster, Michael; von Boehn, Moritz; Prat, Jordi; Macià, Ferran; Casals, Blai; Khaliq, Muhammad Waqas; Hernández-Mínguez, Alberto; Aballe, Lucia; Imbihl, Ronald
    Surface acoustic waves (SAW) allow to manipulate surfaces with potential applications in catalysis, sensor and nanotechnology. SAWs were shown to cause a strong increase in catalytic activity and selectivity in many oxidation and decomposition reactions on metallic and oxidic catalysts. However, the promotion mechanism has not been unambiguously identified. Using stroboscopic X-ray photoelectron spectro-microscopy, we were able to evidence a sub-nanosecond work function change during propagation of 500 MHz SAWs on a 9 nm thick platinum film. We quantify the work function change to 455 μeV. Such a small variation rules out that electronic effects due to elastic deformation (strain) play a major role in the SAW-induced promotion of catalysis. In a second set of experiments, SAW-induced intermixing of a five monolayers thick Rh film on top of polycrystalline platinum was demonstrated to be due to enhanced thermal diffusion caused by an increase of the surface temperature by about 75 K when SAWs were excited. Reversible surface structural changes are suggested to be a major cause for catalytic promotion. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Silane-Mediated Expansion of Domains in Si-Doped κ-Ga2O3 Epitaxy and its Impact on the In-Plane Electronic Conduction
    (Weinheim : Wiley-VCH, 2022) Mazzolini, Piero; Fogarassy, Zsolt; Parisini, Antonella; Mezzadri, Francesco; Diercks, David; Bosi, Matteo; Seravalli, Luca; Sacchi, Anna; Spaggiari, Giulia; Bersani, Danilo; Bierwagen, Oliver; Janzen, Benjamin Moritz; Marggraf, Marcella Naomi; Wagner, Markus R.; Cora, Ildiko; Pécz, Béla; Tahraoui, Abbes; Bosio, Alessio; Borelli, Carmine; Leone, Stefano; Fornari, Roberto
    Unintentionally doped (001)-oriented orthorhombic κ-Ga2O3 epitaxial films on c-plane sapphire substrates are characterized by the presence of ≈ 10 nm wide columnar rotational domains that can severely inhibit in-plane electronic conduction. Comparing the in- and out-of-plane resistance on well-defined sample geometries, it is experimentally proved that the in-plane resistivity is at least ten times higher than the out-of-plane one. The introduction of silane during metal-organic vapor phase epitaxial growth not only allows for n-type Si extrinsic doping, but also results in the increase of more than one order of magnitude in the domain size (up to ≈ 300 nm) and mobility (highest µ ≈ 10 cm2V−1s−1, with corresponding lowest ρ ≈ 0.2 Ωcm). To qualitatively compare the mean domain dimension in κ-Ga2O3 epitaxial films, non-destructive experimental procedures are provided based on X-ray diffraction and Raman spectroscopy. The results of this study pave the way to significantly improved in-plane conduction in κ-Ga2O3 and its possible breakthrough in new generation electronics. The set of cross-linked experimental techniques and corresponding interpretation here proposed can apply to a wide range of material systems that suffer/benefit from domain-related functional properties.
  • Item
    Strategies for Analyzing Noncommon-Atom Heterovalent Interfaces: The Case of CdTe-on-InSb
    (Weinheim : Wiley-VCH, 2019) Luna, Esperanza; Trampert, Achim; Lu, Jing; Aoki, Toshihiro; Zhang, Yong-Hang; McCartney, Martha R.; Smith, David J.
    Semiconductor heterostructures are intrinsic to a wide range of modern-day electronic devices, such as computers, light-emitting devices, and photodetectors. Knowledge of chemical interfacial profiles in these structures is critical to the task of optimizing the device performance. This work presents an analysis of the composition profile and strain across the noncommon-atom heterovalent CdTe/InSb interface, carried out using a combination of electron microscopy imaging techniques. Because of the close atomic numbers of the constituent elements, techniques such as high-angle annular-dark-field and large-angle bright-field scanning transmission electron microscopy, as well as electron energy-loss spectroscopy, give results from the interface region that are inherently difficult to interpret. By contrast, use of the 002 dark-field imaging technique emphasizes the interface location by comparing differences in structure factors between the two materials. Comparisons of experimental and simulated CdTe-on-InSb profiles reveal that the interface is structurally abrupt to within about 1.5 nm (10–90% criterion), while geometric phase analysis based on aberration-corrected electron microscopy images reveals a minimal level of interfacial strain. The present investigation opens new routes to the systematic investigation of heterovalent interfaces, formed by the combination of other valence-mismatched material systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim