Search Results

Now showing 1 - 6 of 6
  • Item
    Experimental evaluation and application of genetic programming to develop predictive correlations for hydrochar higher heating value and yield to optimize the energy content
    (Amsterdam [u.a.] : Elsevier, 2022) Marzban, Nader; Libra, Judy A.; Hosseini, Seyyed Hossein; Fischer, Marcus G.; Rotter, Vera Susanne
    The hydrothermal carbonization (HTC) process has been found to consistently improve biomass fuel characteristics by raising the higher heating value (HHV) of the hydrochar as process severity is increased. However, this is usually associated with a decrease in the solid yield (SY) of hydrochar, making it difficult to determine the optimal operating conditions to obtain the highest energy yield (EY), which combines the two parameters. In this study, a graph-based genetic programming (GP) method was used for developing correlations to predict HHV, SY, and EY for hydrochars based on published values from 42 biomasses and a broad range of HTC experimental systems and operating conditions, i.e., 5 ≤ holding time (min) ≤ 2208, 120 ≤ temperature (°C) ≤ 300, and 0. 0096 ≤ biomass to water ratio ≤ 0.5. In addition, experiments were carried out with 5 pomaces at 4 temperatures and two reactor scales, 1 L and 18.75 L. The correlations were evaluated using this experimental data set in order to estimate prediction errors in similar experimental systems. The use of the correlations to predict HTC conditions to achieve the maximum EY is demonstrated for three common feedstocks, wheat straw, sewage sludge, and a fruit pomace. The prediction was confirmed experimentally with pomace at the optimized HTC conditions; we observed 6.9 % error between the measured and predicted EY %. The results show that the correlations can be used to predict the optimal operating conditions to produce hydrochar with the desired fuel characteristics with a minimum of actual HTC runs.
  • Item
    Acoustic resonance effects and cavitation in SAW aerosol generation
    (Amsterdam [u.a.] : Elsevier, 2023) Roudini, Mehrzad; Manuel Rosselló, Juan; Manor, Ofer; Ohl, Claus-Dieter; Winkler, Andreas
    The interaction of surface acoustic waves (SAWs) with liquids enables the production of aerosols with adjustable droplet sizes in the micrometer range expelled from a very compact source. Understanding the nonlinear acousto-hydrodynamics of SAWs with a regulated micro-scale liquid film is essential for acousto-microfluidics platforms, particularly aerosol generators. In this study, we demonstrate the presence of micro-cavitation in a MHz-frequency SAW aerosol generation platform, which is touted as a leap in aerosol technology with versatile application fields including biomolecule inhalation therapy, micro-chromatography and spectroscopy, olfactory displays, and material deposition. Using analysis methods with high temporal and spatial resolution, we demonstrate that SAWs stabilize spatially arranged liquid micro-domes atop the generator's surface. Our experiments show that these liquid domes become acoustic resonators with highly fluctuating pressure amplitudes that can even nucleate cavitation bubbles, as supported by analytical modeling. The observed fragmentation of liquid domes indicates the participation of three droplet generation mechanisms, including cavitation and capillary-wave instabilities. During aerosol generation, the cavitation bubbles contribute to the ejection of droplets from the liquid domes and also explain observed microstructural damage patterns on the chip surface eventually caused by cavitation-based erosion.
  • Item
    Solvent effects on catalytic activity and selectivity in amine-catalyzed D-fructose isomerization
    (Amsterdam [u.a.] : Elsevier, 2022) Drabo, Peter; Fischer, Matthias; Emondts, Meike; Hamm, Jegor; Engelke, Mats; Simonis, Marc; Qi, Long; Scott, Susannah L.; Palkovits, Regina; Delidovich, Irina
    Rational catalyst design and optimal solvent selection are key to advancing biorefining. Here, we explored the organocatalytic isomerization of D-fructose to a valuable rare monosaccharide, D-allulose, as a function of solvent. The isomerization of D-fructose to D-allulose competes with its isomerization to D-glucose and sugar degradation. In both water and DMF, the catalytic activity of amines towards D-fructose is correlated with their basicity. Solvents impact the selectivity significantly by altering the tautomeric distribution of D-fructose. Our results suggest that the furanose tautomer of D-fructose is isomerized to D-allulose, and the fractional abundance of this tautomer increases as follows: water < MeOH < DMF ≈ DMSO. Reaction rates are also higher in aprotic than in protic solvents. The best D-allulose yield, 14 %, was obtained in DMF with 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst. The reaction kinetics and mechanism were explored using operando NMR spectroscopy.
  • Item
    Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission
    (Amsterdam [u.a.] : Elsevier, 2022) Bagheri, Gholamhossein; Schlenczek, Oliver; Turco, Laura; Thiede, Birte; Stieger, Katja; Kosub, Jana M.; Clauberg, Sigrid; Pöhlker, Mira L.; Pöhlker, Christopher; Moláček, Jan; Scheithauer, Simone; Bodenschatz, Eberhard
    Understanding infection transmission between individuals, as well as evaluating the efficacy of protective measures, are key issues in pandemics driven by human respiratory particles. The key is a quantitative understanding of the size and concentration of particles exhaled and their variability across the size range for a representative population of all ages, genders, and different activities. Here we present data from 132 healthy volunteers aged 5 to 80 years, measured over the entire particle size range for each individual. Conventional particle spectrometry was combined with in-line holography under well-controlled conditions for common activities such as breathing, speaking, singing, and shouting. We find age to be the most important parameter for the concentration of small exhale particles <5 µm (PM5), which doubles over a 7-year period in adolescents and over a 30-year period in adults. Gender, body mass index, smoking or exercise habits have no discernible effect. We provide evidence that particles with a diameter of <5 µm originate from the lower respiratory tract, 5–15 µm from the larynx/pharynx, and >15 µm from the oral cavity. PM5 concentration can vary by one order of magnitude within a person, while inter-person variability can span two orders of magnitude, largely explained by difference in age. We found no discernible inter-person variability for particles larger than 5 µm. Our results show that cumulative volume of PM5 is 2–8 times higher in adults than in children. In contrast, number and volume concentration of larger particles, which are produced predominantly in the upper respiratory tract, is largely independent of age. Finally, we examined different types of airborne-transmissible respiratory diseases and provided insights into possible modes of infection transmission with and without several types/fits of face masks.
  • Item
    Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes
    (Amsterdam [u.a.] : Elsevier, 2019) Murugesan, Kathiravan; Alshammari, Ahmad S.; Sohail, Manzar; Beller, Matthias; Jagadeesh, Rajenahally V.
    Here, we report the use of monosaccharides for the preparation of novel nickel nanoparticles (NP), which constitute selective hydrogenation catalysts. For example, immobilization of fructose and Ni(OAc)2 on silica and subsequent pyrolysis under inert atmosphere produced graphitic shells encapsulated Ni-NP with uniform size and distribution. Interestingly, fructose acts as structure controlling compound to generate specific graphitic layers and the formation of monodisperse NP. The resulting stable and reusable catalysts allow for stereo- and chemoselective semihydrogenation of functionalized and structurally diverse alkynes in high yields and selectivity. © 2019 The Author(s)
  • Item
    Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature
    (Amsterdam [u.a.] : Elsevier, 2016) Al-Fatesh, A.S.; Fakeeha, A.H.; Ibrahim, A.A.; Khan, W.U.; Atia, H.; Eckelt, R.; Seshan, K.; Chowdhury, B.
    Catalytic decomposition of methane has been studied extensively as the production of hydrogen and formation of carbon nanotube is proven crucial from the scientific and technological point of view. In that context, variation of catalyst preparation procedure, calcination temperature and use of promoters could significantly alter the methane conversion, hydrogen yield and morphology of carbon nanotubes formed after the reaction. In this work, Ni promoted and unpromoted Fe/Al2O3 catalysts have been prepared by impregnation, sol–gel and co-precipitation method with calcination at two different temperatures. The catalysts were characterized by X-ray diffraction (XRD), N2 physisorption, temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The catalytic activity was tested for methane decomposition reaction. The catalytic activity was high when calcined at 500 °C temperature irrespective of the preparation method. However while calcined at high temperature the catalyst prepared by impregnation method showed a high activity. It is found from XRD and TPR characterization that disordered iron oxides supported on alumina play an important role for dissociative chemisorptions of methane generating molecular hydrogen. The transmission electron microscope technique results of the spent catalysts showed the formation of carbon nanotube which is having length of 32–34 nm. The Fe nanoparticles are present on the tip of the carbon nanotube and nanotube grows by contraction–elongation mechanism. Among three different methodologies impregnation method was more effective to generate adequate active sites in the catalyst surface. The Ni promotion enhances the reducibility of Fe/Al2O3 oxides showing a higher catalytic activity. The catalyst is stable up to six hours on stream as observed in the activity results.