Search Results

Now showing 1 - 4 of 4
  • Item
    Disulfide Bond Engineering of an Endoglucanase from Penicillium verruculosum to Improve Its Thermostability
    (Basel : Molecular Diversity Preservation International (MDPI), 2019) Bashirova, Anna; Pramanik, Subrata; Volkov, Pavel; Rozhkova, Aleksandra; Nemashkalov, Vitaly; Zorov, Ivan; Gusakov, Alexander; Sinitsyn, Arkady; Schwaneberg, Ulrich; Davari, Mehdi D.
    Endoglucanases (EGLs) are important components of multienzyme cocktails used in the production of a wide variety of fine and bulk chemicals from lignocellulosic feedstocks. However, a low thermostability and the loss of catalytic performance of EGLs at industrially required temperatures limit their commercial applications. A structure-based disulfide bond (DSB) engineering was carried out in order to improve the thermostability of EGLII from Penicillium verruculosum. Based on in silico prediction, two improved enzyme variants, S127C-A165C (DSB2) and Y171C-L201C (DSB3), were obtained. Both engineered enzymes displayed a 15–21% increase in specific activity against carboxymethylcellulose and β-glucan compared to the wild-type EGLII (EGLII-wt). After incubation at 70 °C for 2 h, they retained 52–58% of their activity, while EGLII-wt retained only 38% of its activity. At 80 °C, the enzyme-engineered forms retained 15–22% of their activity after 2 h, whereas EGLII-wt was completely inactivated after the same incubation time. Molecular dynamics simulations revealed that the introduced DSB rigidified a global structure of DSB2 and DSB3 variants, thus enhancing their thermostability. In conclusion, this work provides an insight into DSB protein engineering as a potential rational design strategy that might be applicable for improving the stability of other enzymes for industrial applications.
  • Item
    Directed Evolution of P450 BM3 towards Functionalization of Aromatic O-Heterocycles
    (Basel : Molecular Diversity Preservation International (MDPI), 2019) Santos, Gustavo de Almeida; Dhoke, Gaurao V.; Davari, Mehdi D.; Ruff, Anna Joëlle; Schwaneberg, Ulrich
    The O-heterocycles, benzo-1,4-dioxane, phthalan, isochroman, 2,3-dihydrobenzofuran, benzofuran, and dibenzofuran are important building blocks with considerable medical application for the production of pharmaceuticals. Cytochrome P450 monooxygenase (P450) Bacillus megaterium 3 (BM3) wild type (WT) from Bacillus megaterium has low to no conversion of the six O-heterocycles. Screening of in-house libraries for active variants yielded P450 BM3 CM1 (R255P/P329H), which was subjected to directed evolution and site saturation mutagenesis of four positions. The latter led to the identification of position R255, which when introduced in the P450 BM3 WT, outperformed all other variants. The initial oxidation rate of nicotinamide adenine dinucleotide phosphate (NADPH) consumption increased ≈140-fold (WT: 8.3 ± 1.3 min−1; R255L: 1168 ± 163 min−1), total turnover number (TTN) increased ≈21-fold (WT: 40 ± 3; R255L: 860 ± 15), and coupling efficiency, ≈2.9-fold (WT: 8.8 ± 0.1%; R255L: 25.7 ± 1.0%). Computational analysis showed that substitution R255L (distant from the heme-cofactor) does not have the salt bridge formed with D217 in WT, which introduces flexibility into the I-helix and leads to a heme rearrangement allowing for efficient hydroxylation.
  • Item
    Engineering robust cellulases for tailored lignocellulosic degradation cocktails
    (Basel : MDPI AG, 2020) Contreras, Francisca; Pramanik, Subrata; Rozhkova, Aleksandra M.; Zorov, Ivan N.; Korotkova, Olga; Sinitsyn, Arkady P.; Schwaneberg, Ulrich; Davari, Mehdi D.
    Lignocellulosic biomass is a most promising feedstock in the production of second-generation biofuels. Efficient degradation of lignocellulosic biomass requires a synergistic action of several cellulases and hemicellulases. Cellulases depolymerize cellulose, the main polymer of the lignocellulosic biomass, to its building blocks. The production of cellulase cocktails has been widely explored, however, there are still some main challenges that enzymes need to overcome in order to develop a sustainable production of bioethanol. The main challenges include low activity, product inhibition, and the need to perform fine-tuning of a cellulase cocktail for each type of biomass. Protein engineering and directed evolution are powerful technologies to improve enzyme properties such as increased activity, decreased product inhibition, increased thermal stability, improved performance in non-conventional media, and pH stability, which will lead to a production of more efficient cocktails. In this review, we focus on recent advances in cellulase cocktail production, its current challenges, protein engineering as an efficient strategy to engineer cellulases, and our view on future prospects in the generation of tailored cellulases for biofuel production. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Are Directed Evolution Approaches Efficient in Exploring Nature’s Potential to Stabilize a Lipase in Organic Cosolvents?
    (Basel : MDPI, 2017) Markel, Ulrich; Zhu, Leilei; Frauenkron-Machedjou, Victorine; Zhao, Jing; Bocola, Marco; Davari, Mehdi; Jaeger, Karl-Erich; Schwaneberg, Ulrich
    Despite the significant advances in the field of protein engineering, general design principles to improve organic cosolvent resistance of enzymes still remain undiscovered. Previous studies drew conclusions to engineer enzymes for their use in water-miscible organic solvents based on few amino acid substitutions. In this study, we conduct a comparison of a Bacillus subtilis lipase A (BSLA) library—covering the full natural diversity of single amino acid substitutions at all 181 positions of BSLA—with three state of the art random mutagenesis methods: error-prone PCR (epPCR) with low and high mutagenesis frequency (epPCR-low and high) as well as a transversion-enriched Sequence Saturation Mutagenesis (SeSaM-Tv P/P) method. Libraries were searched for amino acid substitutions that increase the enzyme’s resistance to the water-miscible organic cosolvents 1,4-dioxane (DOX), 2,2,2-trifluoroethanol (TFE), and dimethyl sulfoxide (DMSO). Our analysis revealed that 5%–11% of all possible single substitutions (BSLA site-saturation mutagenesis (SSM) library) contribute to improved cosolvent resistance. However, only a fraction of these substitutions (7%–12%) could be detected in the three random mutagenesis libraries. To our knowledge, this is the first study that quantifies the capability of these diversity generation methods generally employed in directed evolution campaigns and compares them to the entire natural diversity with a single substitution. Additionally, the investigation of the BSLA SSM library revealed only few common beneficial substitutions for all three cosolvents as well as the importance of introducing surface charges for organic cosolvent resistance—most likely due to a stronger attraction of water molecules. © 2017 by the authors.