Search Results

Now showing 1 - 10 of 19
  • Item
    Probing Oxide Reduction and Phase Transformations at the Au-TiO2 Interface by Vibrational Spectroscopy
    (Bussum : Baltzer, 2017-8-17) Pougin, Anna; Lüken, Alexander; Klinkhammer, Christina; Hiltrop, Dennis; Kauer, Max; Tölle, Katharina; Havenith-Newen, Martina; Morgenstern, Karina; Grünert, Wolfgang; Muhler, Martin; Strunk, Jennifer
    By a combination of FT-NIR Raman spectroscopy, infrared spectroscopy of CO adsorption under ultrahigh vacuum conditions (UHV-IR) and Raman spectroscopy in the line scanning mode the formation of a reduced titania phase in a commercial Au/TiO2 catalyst and in freshly prepared Au/anatase catalysts was detected. The reduced phase, formed at the Au-TiO2 interface, can serve as nucleation point for the formation of stoichiometric rutile. TinO2n−1 Magnéli phases, structurally resembling the rutile phase, might be involved in this process. The formation of the reduced phase and the rutilization process is clearly linked to the presence of gold nanoparticles and it does not proceed under similar conditions with the pure titania sample. Phase transformations might be both thermally or light induced, however, the colloidal deposition synthesis of the Au/TiO2 catalysts is clearly ruled out as cause for the formation of the reduced phase.
  • Item
    A Review on Data Fusion of Multidimensional Medical and Biomedical Data
    (Basel : MDPI, 2022) Azam, Kazi Sultana Farhana; Ryabchykov, Oleg; Bocklitz, Thomas
    Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods.
  • Item
    Application of molecular SERS nanosensors: where we stand and where we are headed towards?
    (Berlin ; Heidelberg : Springer, 2020) Jahn I.J.; Mühlig A.; Cialla-May D.
    Molecular specific and highly sensitive detection is the driving force of the surface-enhanced Raman spectroscopy (SERS) community. The technique opens the window to the undisturbed monitoring of cellular processes in situ or to the quantification of small molecular species that do not deliver Raman signals. The smart design of molecular SERS nanosensors makes it possible to indirectly but specifically detect, e.g. reactive oxygen species, carbon monoxide or potentially toxic metal ions. Detection schemes evolved over the years from simple metallic colloidal nanoparticles functionalized with sensing molecules that show uncontrolled aggregation to complex nanostructures with magnetic properties making the analysis of complex environmental samples possible. The present article gives the readership an overview of the present research advancements in the field of molecular SERS sensors, highlighting future trends. © 2020, The Author(s).
  • Item
    Elucidating the chemistry behind the reduction of graphene oxide using a green approach with polydopamine
    (Basel : MDPI, 2019) Silva, Cláudia; Simon, Frank; Friedel, Peter; Pötschke, Petra; Zimmerer, Cordelia
    A new approach using X-ray photoelectron spectroscopy (XPS) was employed to give insight into the reduction of graphene oxide (GO) using a green approach with polydopamine (PDA). In this approach, the number of carbon atoms bonded to OH and to nitrogen in PDA is considered and compared to the total intensity of the signal resulting from OH groups in polydopamine-reduced graphene oxide (PDA-GO) to show the reduction. For this purpose, GO and PDA-GO with different times of reduction were prepared and characterized by Raman Spectroscopy and XPS. The PDA layer was removed to prepare reduced graphene oxide (RGO) and the effect of all chemical treatments on the thermal and electrical properties of the materials was studied. The results show that the complete reduction of the OH groups in GO occurred after 180 min of reaction. It was also concluded that Raman spectroscopy is not well suited to determine if the reduction and restoration of the sp2 structure occurred. Moreover, a significant change in the thermal stability was not observed with the chemical treatments. Finally, the electrical powder conductivity decreased after reduction with PDA, increasing again after its removal. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Modified PCA and PLS: Towards a better classification in Raman spectroscopy–based biological applications
    (New York, NY : Wiley Interscience, 2020) Guo, Shuxia; Rösch, Petra; Popp, Jürgen; Bocklitz, Thomas
    Raman spectra of biological samples often exhibit variations originating from changes of spectrometers, measurement conditions, and cultivation conditions. Such unwanted variations make a classification extremely challenging, especially if they are more significant compared with the differences between groups to be separated. A classifier is prone to such unwanted variations (ie, intragroup variations) and can fail to learn the patterns that can help separate different groups (ie, intergroup differences). This often leads to a poor generalization performance and a degraded transferability of the trained model. A natural solution is to separate the intragroup variations from the intergroup differences and build the classifier based on merely the latter information, for example, by a well-designed feature extraction. This forms the idea of this contribution. Herein, we modified two commonly applied feature extraction approaches, principal component analysis (PCA) and partial least squares (PLS), in order to extract merely the features representing the intergroup differences. Both of the methods were verified with two Raman spectral datasets measured from bacterial cultures and colon tissues of mice, respectively. In comparison to ordinary PCA and PLS, the modified PCA was able to improve the prediction on the testing data that bears significant difference to the training data, while the modified PLS could help avoid overfitting and lead to a more stable classification. © 2019 The Authors. Journal of Chemometrics published by John Wiley & Sons Ltd
  • Item
    Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems
    (Weinheim : Wiley-VCH, 2021) Sprenger, Paul; Stehle, Matthias; Gaur, Abhijeet; Weiß, Jana; Brueckner, Dennis; Zhang, Yi; Garrevoet, Jan; Suuronen, Jussi‐Petteri; Thomann, Michael; Fischer, Achim; Grunwaldt, Jan‐Dierk; Sheppard, Thomas L.
    Industrially-applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing significantly greater activity than binary Bi−Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially-resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM-EDX and spatially-resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X-ray tomography with fluorescence, phase, and diffraction contrast. The identification and co-localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
  • Item
    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study
    (Columbus, Ohio : American Chemical Society, 2020) Guo S.; Beleites C.; Neugebauer U.; Abalde-Cela S.; Afseth N.K.; Alsamad F.; Anand S.; Araujo-Andrade C.; Aškrabić S.; Avci E.; Baia M.; Baranska M.; Baria E.; Batista De Carvalho L.A.E.; De Bettignies P.; Bonifacio A.; Bonnier F.; Brauchle E.M.; Byrne H.J.; Chourpa I.; Cicchi R.; Cuisinier F.; Culha M.; Dahms M.; David C.; Duponchel L.; Duraipandian S.; El-Mashtoly S.F.; Ellis D.I.; Eppe G.; Falgayrac G.; Gamulin O.; Gardner B.; Gardner P.; Gerwert K.; Giamarellos-Bourboulis E.J.; Gizurarson S.; Gnyba M.; Goodacre R.; Grysan P.; Guntinas-Lichius O.; Helgadottir H.; Grošev V.M.; Kendall C.; Kiselev R.; Kölbach M.; Krafft C.; Krishnamoorthy S.; Kubryck P.; Lendl B.; Loza-Alvarez P.; Lyng F.M.; Machill S.; Malherbe C.; Marro M.; Marques M.P.M.; Matuszyk E.; Morasso C.F.; Moreau M.; Muhamadali H.; Mussi V.; Notingher I.; Pacia M.Z.; Pavone F.S.; Penel G.; Petersen D.; Piot O.; Rau J.V.; Richter M.; Rybarczyk M.K.; Salehi H.; Schenke-Layland K.; Schlücker S.; Schosserer M.; Schütze K.; Sergo V.; Sinjab F.; Smulko J.; Sockalingum G.D.; Stiebing C.; Stone N.; Untereiner V.; Vanna R.; Wieland K.; Popp J.; Bocklitz T.
    The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies. © 2020 American Chemical Society.
  • Item
    Correlation of crystal violet biofilm test results of Staphylococcus aureus clinical isolates with Raman spectroscopic read-out
    (Chichester [u.a.] : Wiley, 2021) Ebert, Christina; Tuchscherr, Lorena; Unger, Nancy; Pöllath, Christine; Gladigau, Frederike; Popp, Jürgen; Löffler, Bettina; Neugebauer, Ute
    Biofilm-related infections occur quite frequently in hospital settings and require rapid diagnostic identification as they are recalcitrant to antibiotic therapy and make special treatment necessary. One of the standard microbiological in vitro tests is the crystal violet test. It indirectly determines the amount of biofilm by measuring the optical density (OD) of the crystal violet-stained biofilm matrix and cells. However, this test is quite time-consuming, as it requires bacterial cultivation up to several days. In this study, we correlate fast Raman spectroscopic read-out of clinical Staphylococcus aureus isolates from 47 patients with different disease background with their biofilm-forming characteristics. Included were low (OD < 10), medium (OD ≥ 10 and ≤20), and high (OD > 20) biofilm performers as determined by the crystal violet test. Raman spectroscopic analysis of the bacteria revealed most spectral differences between high and low biofilm performers in the fingerprint region between 750 and 1150 cm−1. Using partial least square regression (PLSR) analysis on the Raman spectra involving the three categories of biofilm formation, it was possible to obtain a slight linear correlation of the Raman spectra with the biofilm OD values. The PLSR loading coefficient highlighted spectral differences between high and low biofilm performers for Raman bands that represent nucleic acids, carbohydrates, and proteins. Our results point to a possible application of Raman spectroscopy as a fast prediction tool for biofilm formation of bacterial strains directly after isolation from the infected patient. This could help clinicians make timely and adapted therapeutic decision in future.
  • Item
    Linear and non-linear optical imaging of cancer cells with silicon nanoparticles
    (Basel : Molecular Diversity Preservation International (MDPI), 2016) Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen
    New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.
  • Item
    In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries
    (Pennington, NJ : Electrochemical Society Inc., 2019) Krause, A.; Tkacheva, O.; Omar, A.; Langklotz, U.; Giebeler, L.; Dörfler, S.; Fauth, F.; Mikolajick, T.; Weber, W.M.
    Rapid decay of silicon anodes during lithiation poses a significant challenge in application of silicon as an anode material in lithium ion batteries. In situ Raman spectroscopy is a powerful method to study the relationship between structural and electrochemical data during electrode cycling and to allow the observation of amorphous as well as liquid and transient species in a battery cell. Herein, we present in situ Raman spectroscopy on high capacity electrode using uncoated and carbon-coated silicon nanowires during first lithiation and delithiation cycle in an optimized lithium ion battery setup and complement the results with operando X-ray reflection diffraction measurements. During lithiation, we were able to detect a new Raman signal at 1859 cm−1 especially on uncoated silicon nanowires. The detailed in situ Raman measurement of the first lithiation/delithiation cycle allowed to differentiate between morphology changes of the electrode as well as interphase formation from electrolyte components.