Search Results

Now showing 1 - 4 of 4
  • Item
    Real Time Predictions of VGF-GaAs Growth Dynamics by LSTM Neural Networks
    (Basel : MDPI, 2021) Dropka, Natasha; Ecklebe, Stefan; Holena, Martin
    The aim of this study was to assess the aptitude of the recurrent Long Short-Term Memory (LSTM) neural networks for fast and accurate predictions of process dynamics in vertical-gradient-freeze growth of gallium arsenide crystals (VGF-GaAs) using datasets generated by numerical transient simulations. Real time predictions of the temperatures and solid–liquid interface position in GaAs are crucial for control applications and for process visualization, i.e., for generation of digital twins. In the reported study, an LSTM network was trained on 1950 datasets with 2 external inputs and 6 outputs. Based on network performance criteria and training results, LSTMs showed the very accurate predictions of the VGF-GaAs growth process with median root-mean-square-error (RMSE) values of 2 × 10−3. This deep learning method achieved a superior predictive accuracy and timeliness compared with more traditional Nonlinear AutoRegressive eXogenous (NARX) recurrent networks.
  • Item
    Application of Artificial Neural Networks in Crystal Growth of Electronic and Opto-Electronic Materials
    (Basel : MDPI, 2020) Dropka, Natasha; Holena, Martin
    In this review, we summarize the results concerning the application of artificial neural networks (ANNs) in the crystal growth of electronic and opto-electronic materials. The main reason for using ANNs is to detect the patterns and relationships in non-linear static and dynamic data sets which are common in crystal growth processes, all in a real time. The fast forecasting is particularly important for the process control, since common numerical simulations are slow and in situ measurements of key process parameters are not feasible. This important machine learning approach thus makes it possible to determine optimized parameters for high-quality up-scaled crystals in real time. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Crystal growth and thermodynamic investigation of Bi2M2+O4 (M = Pd, Cu)
    (London : RSC, 2021) Wolff, Nora; Klimm, Detlef; Habicht, Klaus; Fritsch, Katharina
    Phase equilibria that are relevant for the growth of Bi2MO4 have been studied experimentally, and the ternary phase diagrams of Bi2O3–PdO2–Pd and Bi2O3–Cu2O–CuO and its isopleth section Bi2O3–CuO were redetermined. It is shown that every melting and crystallization process is always accompanied by a redox process at the phase boundary and that for both title compounds, the valence of the transition metal is lowered during melting. Vice versa, during crystal growth, O2 must be transported through the melt to the phase boundary. Based on these new insights provided by our thermodynamic studies, Bi2CuO4 single crystals with a length of up to 7 cm and a diameter of 6 mm were grown by the OFZ technique to be used for investigations of magnetic, electronic and thermal transport properties. The grown crystals were characterized by powder X-ray diffraction, Laue, magnetization and specific heat measurements.
  • Item
    AlF3-assisted flux growth of mullite whiskers and their application in fabrication of porous mullite-alumina monoliths
    (Amsterdam : Elsevier, 2021) Abdullayev, Amanmyrat; Klimm, Detlef; Kamutzki, Franz; Gurlo, Aleksander; Bekheet, Maged F.
    Mullite is a promising material with its competitive thermochemical and mechanical properties. Although mullite could be obtained by several synthesis methods, the flux method emerges with its advantages over other methods. However, obtaining mullite whiskers with a high aspect ratio and length for ceramic reinforcements is still challenging. In this work, mullite whiskers were grown from AlF3-assisted flux. The addition of AlF3 to flux salt not only decreases the formation temperature of mullite to as low as 700 â€‹Â°C and suppresses the formation of corundum side phase, but also increases the length and aspect ratio of the whiskers. The obtained mullite whiskers were used as reinforcement for porous alumina monoliths prepared by the freeze casting route and subsequent sintering at 1500 â€‹Â°C. The fabricated mullite-alumina monoliths show competitive compressive strength of 25.7 â€‹MPa while having as high as 70.6% porosity, which makes them a potential candidate for membrane applications.