Search Results

Now showing 1 - 4 of 4
  • Item
    Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes
    (London : Royal Society of Chemistry (RSC), 2021) Kranz, Christine; Wächtler, Maria
    Research on light-driven catalysis has gained tremendous importance due to the ever-increasing power consumption and the threatening situation of global warming related to burning fossil fuels. Significant efforts have been dedicated to artificial photosynthesis mimicking nature to split H2O into H2 and O2 by solar energy. Novel semiconductor und molecular photocatalysts focusing on one-step excitation processes via single component photocatalysts or via two-step excitation processes mimicking the Z-scheme of natural photosynthesis are currently developed. Analytical and physicochemical methods, which provide information at different time and length scales, are used to gain fundamental understanding of all processes leading to catalytic activity, i.e., light absorption, charge separation, transfer of charges to the reaction centres and catalytic turnover, but also understanding degradation processes of the photocatalytic active material. Especially, molecular photocatalysts still suffer from limited long-Term stability due to the formation of reactive intermediates, which may lead to degradation. Although there is an overwhelming number of research articles and reviews focussing on various materials for photocatalytic water splitting, to date only few reviews have been published providing a comprehensive overview on methods for characterizing such materials. This review will highlight spectroscopic, spectroelectrochemical, and electrochemical approaches in respect to their potential in studying processes in semiconductor and (supra)molecular photocatalysts. Special emphasis will be on spectroscopic methods to investigate light-induced processes in intermediates of sequential electron transfer chains. Further, microscopic characterization methods, which are predominantly used for semiconducting and hybrid photocatalytic materials will be reviewed as surface area, structure, facets, defects, and bulk properties such as crystallinity and crystal size are key parameters for charge separation, transfer processes and suppression of charge recombination. Recent developments in scanning probe microscopy will also be highlighted as such techniques are highly suited for studying photocatalytic active material. © The Royal Society of Chemistry.
  • Item
    Ultrathin two-dimensional conjugated metal– organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis
    (Cambridge : RSC, 2020) Wang, Zhonghao; Wang, Gang; Qi, Haoyuan; Wang, Mao; Wang, Mingchao; Park, SangWook; Wang, Huaping; Yu, Minghao; Kaiser, Ute; Fery, Andreas; Zhou, Shengqiang; Dong, Renhao; Feng, Xinliang
    Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have recently emerged for potential applications in (opto-)electronics, chemiresistive sensing, and energy storage and conversion, due to their excellent electrical conductivity, abundant active sites, and intrinsic porous structures. However, developing ultrathin 2D c-MOF nanosheets (NSs) for facile solution processing and integration into devices remains a great challenge, mostly due to unscalable synthesis, low yield, limited lateral size and low crystallinity. Here, we report a surfactant-assisted solution synthesis toward ultrathin 2D c-MOF NSs, including HHB-Cu (HHB = hexahydroxybenzene), HHB-Ni and HHTP-Cu (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). For the first time, we achieve single-crystalline HHB-Cu(Ni) NSs featured with a thickness of 4-5 nm (∼8-10 layers) and a lateral size of 0.25-0.65 μm2, as well as single-crystalline HHTP-Cu NSs with a thickness of ∼5.1 ± 2.6 nm (∼10 layers) and a lateral size of 0.002-0.02 μm2. Benefiting from the ultrathin feature, the synthetic NSs allow fast ion diffusion and high utilization of active sites. As a proof of concept, when serving as a cathode material for Li-ion storage, HHB-Cu NSs deliver a remarkable rate capability (charge within 3 min) and long-term cycling stability (90% capacity retention after 1000 cycles), superior to the corresponding bulk materials and other reported MOF cathodes. This journal is © The Royal Society of Chemistry.
  • Item
    Towards low-temperature processing of efficient γ-CsPbI3 perovskite solar cells
    (London [u.a.] : RSC, 2023) Zhang, Zongbao; Ji, Ran; Hofstetter, Yvonne J.; Deconinck, Marielle; Brunner, Julius; Li, Yanxiu; An, Qingzhi; Vaynzof, Yana
    Inorganic cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) have attracted enormous attention due to their excellent thermal stability and optical bandgap (∼1.73 eV), well-suited for tandem device applications. However, achieving high-performance photovoltaic devices processed at low temperatures is still challenging. Here we reported a new method for the fabrication of high-efficiency and stable γ-CsPbI3 PSCs at lower temperatures than was previously possible by introducing the long-chain organic cation salt ethane-1,2-diammonium iodide (EDAI2) and regulating the content of lead acetate (Pb(OAc)2) in the perovskite precursor solution. We find that EDAI2 acts as an intermediate that can promote the formation of γ-CsPbI3, while excess Pb(OAc)2 can further stabilize the γ-phase of CsPbI3 perovskite. Consequently, improved crystallinity and morphology and reduced carrier recombination are observed in the CsPbI3 films fabricated by the new method. By optimizing the hole transport layer of CsPbI3 inverted architecture solar cells, we demonstrate efficiencies of up to 16.6%, surpassing previous reports examining γ-CsPbI3 in inverted PSCs. Notably, the encapsulated solar cells maintain 97% of their initial efficiency at room temperature and under dim light for 25 days, demonstrating the synergistic effect of EDAI2 and Pb(OAc)2 in stabilizing γ-CsPbI3 PSCs.
  • Item
    The influence of the blend ratio in PA6/PA66/MWCNT blend composites on the electrical and thermal properties
    (Basel : MDPI, 2019) Krause, Beate; Kroschwald, Lisa; Pötschke, Petra
    It is known that the percolation threshold of polyamide 6 (PA6)/multiwalled carbon nanotube (MWCNT) composites is higher than that of PA66/MWCNT composites under the same mixing conditions and melt viscosity. A series of blends of PA6 and PA66 containing 1 wt % MWCNTs have been prepared to investigate this phenomenon. At contents up to 20 wt % PA66, the blends were not electrically conductive. The electrical resistivity dropped to 109 Ohm∙cm for PA66/PA6 30/70 blends. The resistivity was 105 Ohm∙cm at higher PA66 contents. Differential scanning calorimetry was used to investigate the thermal behavior of blends. The glass transition temperature was almost constant for all blend compositions, indicating that the amorphous phases are miscible. The MWCNT addition influenced the crystallization of PA66 much more than the PA6 crystallization. A heterogeneous crystallization of the polyamide in PA66/PA6 blends took place, and the MWCNTs were mainly localized in the earlier crystallizing PA66 phase. Thus, the formation of the nanotube network and thus the electrical volume resistivity of the PA6/PA66 blends with 1 wt % MWCNTs is significantly influenced by the crystallization behavior. In PA66/PA6 blends up to 60 wt %, the more expensive PA66 can be replaced by the cheaper PA6 while retaining its electrical properties