Search Results

Now showing 1 - 5 of 5
  • Item
    Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries
    (London [u.a.] : RSC, 2022) Arnold, Stefanie; Gentile, Antonio; Li, Yunjie; Wang, Qingsong; Marchionna, Stefano; Ruffo, Riccardo; Presser, Volker
    Due to their versatile properties and excellent electrical conductivity, MXenes have become attractive materials for alkali metal-ion batteries. However, as the capacity is limited to lower values due to the intercalation mechanism, these materials can hardly keep up in the ever-fast-growing community of battery research. Antimony has a promisingly high theoretical sodiation capacity characterized by an alloying reaction. The main drawback of this type of battery material is related to the high volume changes during cycling, often leading to electrode cracking and pulverization, resulting in poor electrochemical performance. A synergistic effect of combing antimony and MXene can be expected to obtain an optimized electrochemical system to overcome capacity fading of antimony while taking advantage of MXene charge storage ability. In this work, variation of the synthesis parameters and material design strategy have been dedicated to achieving the optimized antimony/MXene hybrid electrodes for high-performance sodium-ion batteries. The optimized performance does not align with the highest amount of antimony, the smallest nanoparticles, or the largest interlayer distance of MXene but with the most homogeneous distribution of antimony and MXene while both components remain electrochemically addressable. As a result, the electrode with 40 mass% MXene, not previously expanded, etched with 5 mass% HF and 60% antimony synthesized on the surfaces of MXene emerged as the best electrode. We obtained a high reversible capacity of 450 mA h g−1 at 0.1 A g−1 with a capacity retention of around 96% after 100 cycles with this hybrid material. Besides the successful cycling stability, this material also exhibits high rate capability with a capacity of 365 mA h g−1 at 4 A g−1. In situ XRD measurements and post mortem analysis were used to investigate the reaction mechanism.
  • Item
    Investigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experiments
    (London [u.a.] : RSC, 2021) Smetaczek, Stefan; Pycha, Eva; Ring, Joseph; Siebenhofer, Matthäus; Ganschow, Steffen; Berendts, Stefan; Nenning, Andreas; Kubicek, Markus; Rettenwander, Daniel; Limbeck, Andreas; Fleig, Jürgen
    Cubic Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress via macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1–4.3 V vs. Li+/Li, leading to the formation of Li-poor phases like La2Zr2O7 beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.
  • Item
    In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries
    (Pennington, NJ : Electrochemical Society Inc., 2019) Krause, A.; Tkacheva, O.; Omar, A.; Langklotz, U.; Giebeler, L.; Dörfler, S.; Fauth, F.; Mikolajick, T.; Weber, W.M.
    Rapid decay of silicon anodes during lithiation poses a significant challenge in application of silicon as an anode material in lithium ion batteries. In situ Raman spectroscopy is a powerful method to study the relationship between structural and electrochemical data during electrode cycling and to allow the observation of amorphous as well as liquid and transient species in a battery cell. Herein, we present in situ Raman spectroscopy on high capacity electrode using uncoated and carbon-coated silicon nanowires during first lithiation and delithiation cycle in an optimized lithium ion battery setup and complement the results with operando X-ray reflection diffraction measurements. During lithiation, we were able to detect a new Raman signal at 1859 cm−1 especially on uncoated silicon nanowires. The detailed in situ Raman measurement of the first lithiation/delithiation cycle allowed to differentiate between morphology changes of the electrode as well as interphase formation from electrolyte components.
  • Item
    Dual-Zinc Electrode Electrochemical Desalination
    (Weinheim : Wiley-VCH Verlag, 2020) Dai, J.; Wang, J.; Hou, X.; Ru, Q.; He, Q.; Srimuk, P.; Presser, V.; Chen, F.
    Continuous and low-energy desalination technologies are in high demand to enable sustainable water remediation. Our work introduces a continuous desalination process based on the redox reaction of a dual-zinc electrode. The system consists of two zinc foils as redox electrodes with flowing ZnCl2 electrolyte, concentrated and diluted salt streams with three anion- and cation-exchange membranes (AEM and CEM) separated configuration (AEM|CEM|AEM). If a constant current is applied, the negative zinc electrode is oxidized, and electrons are released to the external circuit, whereas the positive zinc electrode is reduced, causing salt removal in the dilution stream. The results showed that brackish water can be directly desalted to 380.6 ppm during a continuous batch-mode process. The energy consumption can be as low as 35.30 kJ mol−1 at a current density of 0.25 mA cm−2, which is comparable to reverse osmosis. In addition, the dual-zinc electrode electrochemical desalination demonstrates excellent rate performance, reversibility, and batch cyclability through electrode exchange regeneration. Our research provides a route for continuous low-energy desalination based on metal redox mediators.
  • Item
    High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water
    (London : RSC Publishing, 2016) Srimuk, Pattarachai; Ries, Lucie; Zeiger, Marco; Fleischmann, Simon; Jäckel, Nicolas; Tolosa, Aura; Krüner, Benjamin; Aslan, Mesut; Presser, Volker
    Performance stability in capacitive deionization (CDI) is particularly challenging in systems with a high amount of dissolved oxygen due to rapid oxidation of the carbon anode and peroxide formation. For example, carbon electrodes show a fast performance decay, leading to just 15% of the initial performance after 50 CDI cycles in oxygenated saline solution (5 mM NaCl). We present a novel strategy to overcome this severe limitation by employing nanocarbon particles hybridized with sol–gel-derived titania. In our proof-of-concept study, we demonstrate very stable performance in low molar saline electrolyte (5 mM NaCl) with saturated oxygen for the carbon/metal oxide hybrid (90% of the initial salt adsorption capacity after 100 cycles). The electrochemical analysis using a rotating disk electrode (RDE) confirms the oxygen reduction reaction (ORR) catalytic effect of FW200/TiO2, preventing local peroxide formation by locally modifying the oxygen reduction reaction.