Search Results

Now showing 1 - 2 of 2
  • Item
    Boundary conditions for electrochemical interfaces
    (Bristol : IOP Publishing, 2017) Landstorfer, Manuel
    Consistent boundary conditions for electrochemical interfaces, which cover double layer charging, pseudo-capacitive effects and transfer reactions, are of high demand in electrochemistry and adjacent disciplines. Mathematical modeling and optimization of electrochemical systems is a strongly emerging approach to reduce cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-catalysis. However, many mathematical models which are used to describe such systems lack a real predictive value. Origin of this shortcoming is the usage of oversimplified boundary conditions. In this work we derive the boundary conditions for some general electrode-electrolyte interface based on non-equilibrium thermodynamics for volumes and surfaces. The resulting equations are widely applicable and cover also tangential transport. The general framework is then applied to a specific material model which allows the deduction of a current-voltage relation and thus a comparison to experimental data. Some simplified 1D examples show the range of applicability of the new approach.
  • Item
    Emerging, hydrogen-driven electrochemical water purification
    (Amsterdam [u.a.] : Elsevier Science, 2022) Suss, M.E.; Zhang, Y.; Atlas, I.; Gendel, Y.; Ruck, E.B.; Presser, V.
    Energy-efficient technologies for the remediation of water and generation of drinking water is a key towards sustainable technologies. Electrochemical desalination technologies are promising alternatives towards established methods, such as reverse osmosis or nanofiltration. In the last few years, hydrogen-driven electrochemical water purification has emerged. This review article explores the concept of desalination fuel cells and capacitive-Faradaic fuel cells for ion separation.