Search Results

Now showing 1 - 8 of 8
  • Item
    Self-propelled micromotors for cleaning polluted water
    (Washington, DC : ACS, 2013) Soler, L.; Magdanz, V.; Fomin, V.M.; Sanchez, S.; Schmidt, O.G.
    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.
  • Item
    Toward Green Acylation of (Hetero)arenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones
    (Washington, DC : ACS Publ., 2017) Liu, Jie; Wei, Zhihong; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    Green Friedel-Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero)arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C-H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel-Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene) as well as of natural products (eugenol and safrole). Furthermore, synthetic applications to drug molecules are showcased.
  • Item
    Cobalt-catalysed reductive C-H alkylation of indoles using carboxylic acids and molecular hydrogen
    (Cambridge : RSC, 2017) Cabrero-Antonino, Jose R.; Adam, Rosa; Junge, Kathrin; Beller, Matthias
    The direct CH-alkylation of indoles using carboxylic acids is presented for the first time. The catalytic system based on the combination of Co(acac)3 and 1,1,1-tris(diphenylphosphinomethyl)-ethane (Triphos, L1), in the presence of Al(OTf)3 as co-catalyst, is able to perform the reductive alkylation of 2-methyl-1H-indole with a wide range of carboxylic acids. The utility of the protocol was further demonstrated through the C3 alkylation of several substituted indole derivatives using acetic, phenylacetic or diphenylacetic acids. In addition, a careful selection of the reaction conditions allowed to perform the selective C3 alkenylation of some indole derivatives. Moreover, the alkenylation of C2 position of 3-methyl-1H-indole was also possible. Control experiments indicate that the aldehyde, in situ formed from the carboxylic acid hydrogenation, plays a central role in the overall process. This new protocol enables the direct functionalization of indoles with readily available and stable carboxylic acids using a non-precious metal based catalyst and hydrogen as reductant.
  • Item
    Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors
    (Weinheim : Wiley-VCH Verlag, 2020) Ngo G.Q.; George A.; Schock R.T.K.; Tuniz A.; Najafidehaghani E.; Gan Z.; Geib N.C.; Bucher T.; Knopf H.; Saravi S.; Neumann C.; Lühder T.; Schartner E.P.; Warren-Smith S.C.; Ebendorff-Heidepriem H.; Pertsch T.; Schmidt M.A.; Turchanin A.; Eilenberger F.
    Atomically thin transition metal dichalcogenides are highly promising for integrated optoelectronic and photonic systems due to their exciton-driven linear and nonlinear interactions with light. Integrating them into optical fibers yields novel opportunities in optical communication, remote sensing, and all-fiber optoelectronics. However, the scalable and reproducible deposition of high-quality monolayers on optical fibers is a challenge. Here, the chemical vapor deposition of monolayer MoS2 and WS2 crystals on the core of microstructured exposed-core optical fibers and their interaction with the fibers’ guided modes are reported. Two distinct application possibilities of 2D-functionalized waveguides to exemplify their potential are demonstrated. First, the excitonic 2D material photoluminescence is simultaneously excited and collected with the fiber modes, opening a novel route to remote sensing. Then it is shown that third-harmonic generation is modified by the highly localized nonlinear polarization of the monolayers, yielding a new avenue to tailor nonlinear optical processes in fibers. It is anticipated that the results may lead to significant advances in optical-fiber-based technologies. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Catalyst-free site-specific surface modifications of nanocrystalline diamond films via microchannel cantilever spotting
    (London : RSC Publishing, 2016) Davydova, Marina; de los Santos Pereira, Andres; Bruns, Michael; Kromka, Alexander; Ukraintsev, Egor; Hirtz, Michael; Rodriguez-Emmenegger, Cesar
    The properties of nanocrystalline diamond (NCD) films offer great potential for the creation of various sensing and photonic devices. A great challenge in order to materialize such applications lies in achieving the micrometrically resolved functionalization of NCD surfaces. In the present work, we introduce a facile approach to meet this challenge employing the novel strain-promoted alkyne–azide cycloaddition “click” chemistry reaction, a catalyst-free ligation protocol compatible with biomolecules. The ability to achieve well-resolved multicomponent patterns with high reproducibility is demonstrated, paving the way for the fabrication of novel devices based on micropatterned NCD films.
  • Item
    Sulfonated covalent triazine-based frameworks as catalysts for the hydrolysis of cellobiose to glucose
    (London : RSC Publishing, 2018) Artz, Jens; Delidovich, Irina; Pilaski, Moritz; Niemeier, Johannes; Kübber, Britta Maria; Rahimi, Khosrow; Palkovits, Regina
    Covalent triazine-based frameworks (CTFs) were synthesized in large scale from various monomers. The materials were post-synthetically modified with acid functionalities via gas-phase sulfonation. Acid capacities of up to 0.83 mmol g−1 at sulfonation degrees of up to 10.7 mol% were achieved. Sulfonated CTFs exhibit high specific surface area and porosity as well as excellent thermal stability under aerobic conditions (>300 °C). Successful functionalization was verified investigating catalytic activity in the acid-catalyzed hydrolysis of cellobiose to glucose at 150 °C in H2O. Catalytic activity is mostly affected by porosity, indicating that mesoporosity is beneficial for hydrolysis of cellobiose. Like other sulfonated materials, S-CTFs show low stability under hydrothermal reaction conditions. Recycling of the catalyst is challenging and significant amounts of sulfur leached out of the materials. Nevertheless, gas-phase sulfonation opens a path to tailored solid acids for application in various reactions. S-CTFs form the basis for multi-functional catalysts, containing basic coordination sites for metal catalysts, tunable structural parameters and surface acidity within one sole system.
  • Item
    Direct chemical vapor deposition synthesis of large area single-layer brominated graphene
    (Cambridge : Royal Society of Chemistry, 2019) Hasan, M.; Meiou, W.; Yulian, L.; Ullah, S.; Ta, H.Q.; Zhao, L.; Mendes, R.G.; Malik, Z.P.; Ahmad, N.M.; Liu, Z.; Rümmeli, M.H.
    Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp2 carbon with halogens, such as bromine, was demonstrated with carbon nanotubes. However, the direct synthesis of brominated graphene has thus far remained elusive. In this study we show how large area brominated graphene with C-Br bonds can be achieved directly (i.e. a single step) using hydrogen rich low pressure chemical vapor deposition. The direct synthesis of brominated graphene could lead to practical developments. © The Royal Society of Chemistry.
  • Item
    Mixed-halide triphenyl methyl radicals for site-selective functionalization and polymerization
    (London : RSC Publishing, 2021) Chen, Lisa; Arnold, Mona; Blinder, Rémi; Jelezko, Fedor; Kuehne, Alexander J. C.
    Derivatives of the stable, luminescent tris-2,4,6-trichlorophenylmethyl (TTM) radical exhibit unique doublet spin properties that are of interest for applications in optoelectronics, spintronics, and energy storage. However, poor reactivity of the chloride-moieties limits the yield of functionalization and thus the accessible variety of high performance luminescent radicals. Here, we present a pathway to obtain mixed-bromide and chloride derivatives of TTM by simple Friedel–Crafts alkylation. The resulting radical compounds show higher stability and site-specific reactivity in cross-coupling reactions, due to the better leaving group character of the para-bromide. The mixed halide radicals give access to complex, and so far inaccessible luminescent open-shell small molecules, as well as polymers carrying the radical centers in their backbone. The new mixed-halide triphenyl methyl radicals represent a powerful building block for customized design and synthesis of stable luminescent radicals.